Newton's Method

Newton's method is a technique for generating numerical approximate solutions to equations of the form $f(x)=0$. For example, one can easily get a good approximation to $\sqrt{2}$ by applying Newton's method to the equation $x^{2}-2=0$. This will be done in Example 1, below.

Here is the derivation of Newton's method. We start by simply making a guess for the solution. For example we could base the guess on a sketch of the graph of $f(x)$. Call the initial guess x_{1}. Next find the linear (tangent line) approximation to $f(x)$ near x_{1}. Let's call the linear approximation $F(x)$. It is

$$
F(x)=f\left(x_{1}\right)+f^{\prime}\left(x_{1}\right)\left(x-x_{1}\right)
$$

Now, instead of trying to solve $f(x)=0$, we solve the linear equation $F(x)=0$ and call the solution x_{2}.

$$
0=F(x)=f\left(x_{1}\right)+f^{\prime}\left(x_{1}\right)\left(x-x_{1}\right) \Longleftrightarrow x-x_{1}=-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)} \Longleftrightarrow x=x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}
$$

Now we repeat, but starting with the (second) guess x_{2} rather than x_{1}. This gives the (third) guess $x_{3}=x_{2}-\frac{f\left(x_{2}\right)}{f^{\prime}\left(x_{2}\right)}$. And so on. By way of summary, Newton's method is

1) Make a preliminary guess x_{1}.
2) Define $x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}$.
3) Iterate. That is, for each natural number n, once you have computed x_{n}, define $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$.

Example 1 In this example we compute, approximately, the square root of two by applying Newton's method to the equation

$$
f(x)=x^{2}-2=0
$$

Since $f^{\prime}(x)=2 x$, Newton's method says that we should generate approximate solutions by iteratively applying

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-\frac{x_{n}^{2}-2}{2 x_{n}}=\frac{1}{2} x_{n}+\frac{1}{x_{n}}
$$

Since $1^{2}=1<2$ and $2^{2}=4>2$, the square root of two must be between 1 and 2 , so let's start Newton's method with the initial guess $x_{1}=1.5$ Here goes:

$$
\begin{aligned}
x_{1} & =1.5 \\
x_{2} & =\frac{1}{2} x_{1}+\frac{1}{x_{1}}=\frac{1}{2}(1.5)+\frac{1}{1.5} \\
& =1.416666667 \\
x_{3} & =\frac{1}{2} x_{2}+\frac{1}{x_{2}}=\frac{1}{2}(1.416666667)+\frac{1}{1.416666667} \\
& =1.414215686 \\
x_{4} & =\frac{1}{2} x_{3}+\frac{1}{x_{3}}=\frac{1}{2}(1.414215686)+\frac{1}{1.414215686} \\
& =1.414213562 \\
x_{5} & =\frac{1}{2} x_{4}+\frac{1}{x_{4}}=\frac{1}{2}(1.414213562)+\frac{1}{1.414213562} \\
& =1.414213562
\end{aligned}
$$

Since $f(1.4142135615)=-2.5 \times 10^{-9}<0$ and $f(1.4142135625)=3.6 \times 10^{-10}>0$ the square root of two must be between 1.4142135615 and 1.4142135625 .

Example 2 In this example we compute, approximately, π by applying Newton's method to the equation

$$
f(x)=\sin x=0
$$

starting with $x_{1}=3$. Since $f^{\prime}(x)=\cos x$, Newton's method says that we should generate approximate solutions by iteratively applying

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-\frac{\sin x_{n}}{\cos x_{n}}=x_{n}-\tan x_{n}
$$

Here goes

$$
\begin{aligned}
x_{1} & =3 \\
x_{2} & =x_{1}-\tan x_{1}=3-\tan 3 \\
& =3.142546543 \\
x_{3} & =3.142546543-\tan 3.142546543 \\
& =3.141592653 \\
x_{4} & =3.141592653-\tan 3.141592653 \\
& =3.141592654 \\
x_{5} & =3.141592654-\tan 3.141592654 \\
& =3.141592654
\end{aligned}
$$

Since $f(3.1415926535)=9.0 \times 10^{-11}>0$ and $f(3.1415926545)=-9.1 \times 10^{-11}<0$ the square root of two must be between 3.1415926535 and 3.1415926545 .

Example 3 This example illustrates how Newton's method can go badly wrong if your initial guess is not good enough. We'll try to solve the equation

$$
f(x)=\tan ^{-1} x=0
$$

starting with $x_{1}=1.5$. Of course the solution to this equation is just $x=0$. Since $f^{\prime}(x)=\frac{1}{1+x^{2}}$ Newton's method gives

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-\left(1+x_{n}^{2}\right) \tan ^{-1} x_{n}
$$

So

$$
\begin{aligned}
& x_{1}=1.5 \\
& x_{2}=1.5-\left(1+1.5^{2}\right) \tan ^{-1} 1.5=-1.69 \\
& x_{3}=-1.69-\left(1+1.69^{2}\right) \tan ^{-1}(-1.69)=2.32 \\
& x_{4}=2.32-\left(1+2.32^{2}\right) \tan ^{-1}(2.32)=-5.11 \\
& x_{5}=-5.11-\left(1+5.11^{2}\right) \tan ^{-1}(-5.11)=32.3 \\
& x_{6}=32.3-\left(1+32.3^{2}\right) \tan ^{-1}(32.3)=-1575 \\
& x_{7}=3,894,976
\end{aligned}
$$

Here is a figure which shows what went wrong. In this figure, $y=F_{1}(x)$ is the tangent line to $y=\tan ^{-1} x$ at $x=x_{1}$. Under Newton's method, this tangent line crosses the x-axis at $x=x_{2}$. Then $y=F_{2}(x)$ is the tangent to $y=\tan ^{-1} x$ at $x=x_{2}$. Under Newton's method, this tangent line crosses the x-axis at $x=x_{3}$. And so on.

The problem arose because the x_{n} 's, and especially x_{1}, were far enough from the solution $x=0$, that the tangent line approximations, while good approximations to $f(x)$

for $x \approx x_{n}$, were very poor approximations to $f(x)$ for $x \approx 0$. If we had started with $x_{1}=0.5$ instead of $x_{1}=1.5$, Newton's method would not have failed:

$$
x_{1}=0.5 \quad x_{2}=-0.0796 \quad x_{3}=0.000335 \quad x_{4}=-2.51 \times 10^{-11}
$$

Error Behaviour of Newton's Method

Newton's method usually works spectacularly well, provided your initial guess is reasonably close to a solution of $f(x)=0$. A good way to select this initial guess is to sketch the graph of $y=f(x)$. We now see why "Newton's method usually works spectacularly well, provided your initial guess is reasonably close to a solution of $f(x)=0$ ".

Let r be any solution of $f(x)=0$. Then $f(r)=0$. Suppose that we have already computed x_{n}. The error in x_{n} is $\left|x_{n}-r\right|$. We now derive a formula that relates the error after the next step, $\left|x_{n+1}-r\right|$, to $\left|x_{n}-r\right|$. We have seen in class that

$$
f(x)=f\left(x_{n}\right)+f^{\prime}\left(x_{n}\right)\left(x-x_{n}\right)+\frac{1}{2} f^{\prime}(c)\left(x-x_{n}\right)^{2}
$$

for some c between x_{n} and x. In particular, choosing $x=r$,

$$
\begin{equation*}
0=f(r)=f\left(x_{n}\right)+f^{\prime}\left(x_{n}\right)\left(r-x_{n}\right)+\frac{1}{2} f^{\prime}(c)\left(r-x_{n}\right)^{2} \tag{1}
\end{equation*}
$$

By the definition of x_{n+1},

$$
\begin{equation*}
0=f\left(x_{n}\right)+f^{\prime}\left(x_{n}\right)\left(x_{n+1}-x_{n}\right) \tag{2}
\end{equation*}
$$

(In fact, we defined x_{n+1} as the solution of $0=f\left(x_{n}\right)+f^{\prime}\left(x_{n}\right)\left(x-x_{n}\right)$.) Subtracting (2) from (1).

$$
\begin{aligned}
0=f^{\prime}\left(x_{n}\right)\left(r-x_{n+1}\right)+\frac{1}{2} f^{\prime \prime}(c)\left(r-x_{n}\right)^{2} & \Rightarrow x_{n+1}-r=\frac{f^{\prime \prime}(c)}{2 f^{\prime}\left(x_{n}\right)}\left(x_{n}-r\right)^{2} \\
& \Rightarrow\left|x_{n+1}-r\right|=\frac{\left|f^{\prime \prime}(c)\right|}{2\left|f^{\prime}\left(x_{n}\right)\right|}\left|x_{n}-r\right|^{2}
\end{aligned}
$$

If the guess x_{n} is close to r, then c, which must be between x_{n} and r, is also close to r and $\left|x_{n+1}-r\right| \approx \frac{\left|f^{\prime \prime}(r)\right|}{2\left|f^{\prime}(r)\right|}\left|x_{n}-r\right|^{2}$. Even when x_{n} is not close to r, if we know that there are two numbers $L, M>0$ such that f obeys:

H1) $\left|f^{\prime}\left(x_{n}\right)\right| \geq L$
H2) $\left|f^{\prime \prime}(c)\right| \leq M$
(we'll see examples of this below) then we will have

$$
\begin{equation*}
\left|x_{n+1}-r\right| \leq \frac{M}{2 L}\left|x_{n}-r\right|^{2} \tag{3}
\end{equation*}
$$

Let's denote by ε_{1} the error $\left|x_{1}-r\right|$ of our initial guess. In fact, let's denote by ε_{n} the error $\left|x_{n}-r\right|$ in x_{n}. Then (3) says

$$
\varepsilon_{n+1} \leq \frac{M}{2 L} \varepsilon_{n}^{2}
$$

In particular

$$
\begin{aligned}
& \varepsilon_{2} \leq \frac{M}{2 L} \varepsilon_{1}^{2} \\
& \varepsilon_{3} \leq \frac{M}{2 L} \varepsilon_{2}^{2} \leq \frac{M}{2 L}\left(\frac{M}{2 L} \varepsilon_{1}^{2}\right)^{2}=\left(\frac{M}{2 L}\right)^{3} \varepsilon_{1}^{4} \\
& \varepsilon_{4} \leq \frac{M}{2 L} \varepsilon_{3}^{2} \leq \frac{M}{2 L}\left(\left(\frac{M}{2 L}\right)^{3} \varepsilon_{1}^{4}\right)^{2}=\left(\frac{M}{2 L}\right)^{7} \varepsilon_{1}^{8} \\
& \varepsilon_{5} \leq \frac{M}{2 L} \varepsilon_{4}^{2} \leq \frac{M}{2 L}\left(\left(\frac{M}{2 L}\right)^{7} \varepsilon_{1}^{8}\right)^{2}=\left(\frac{M}{2 L}\right)^{15} \varepsilon_{1}^{16}
\end{aligned}
$$

By now we can see a pattern forming, that is easily verified by induction

$$
\begin{equation*}
\varepsilon_{n} \leq\left(\frac{M}{2 L}\right)^{2^{n-1}-1} \varepsilon_{1}^{2^{n-1}}=\frac{2 L}{M}\left(\frac{M}{2 L} \varepsilon_{1}\right)^{2^{n-1}} \tag{4}
\end{equation*}
$$

As long as $\frac{M}{2 L} \varepsilon_{1}<1$ (which tells us quantitatively how good our first guess has to be in order for Newton's method to converge), this goes to zero extremely quickly as n increases. For example, suppose that $\frac{M}{2 L} \varepsilon_{1} \leq \frac{1}{2}$. Then

$$
\varepsilon_{n} \leq \frac{2 L}{M}\left(\frac{1}{2}\right)^{2^{n-1}} \leq \frac{2 L}{M} \begin{cases}0.25 & \text { if } n=2 \\ 0.0625 & \text { if } n=3 \\ 0.0039=3.9 \times 10^{-3} & \text { if } n=4 \\ 0.000015=1.5 \times 10^{-5} & \text { if } n=5 \\ 0.00000000023=2.3 \times 10^{-10} & \text { if } n=6 \\ 0.000000000000000000054=5.4 \times 10^{-20} & \text { if } n=7\end{cases}
$$

Each time you increase n by one, the number of zeroes after the decimal place roughly doubles.

Example 1 (continued) Let's consider, as we did in Example 1, $f(x)=x^{2}-2$, starting with $x_{1}=\frac{3}{2}$. Then

$$
f^{\prime}(x)=2 x \quad f^{\prime \prime}(x)=2
$$

So we may certainly take $M=2$ and if, for example, $x_{n} \geq 1$ for all n (as happened in Example 1), we may take $L=2$ too. While we do not know what r is, we do know that $1 \leq r \leq 2$ (since $f(1)=1^{1}-2<0$ and $\left.f(2)=2^{2}-2>0\right)$. As we took $x_{1}=\frac{3}{2}$, we have $\varepsilon_{1}=\left|x_{1}-r\right| \leq \frac{1}{2}$, so that $\frac{M}{2 L} \varepsilon_{1} \leq \frac{1}{4}$ and

$$
\varepsilon_{n+1} \leq \frac{2 L}{M}\left(\frac{M}{2 L} \varepsilon_{1}\right)^{2^{n-1}} \leq 2\left(\frac{1}{4}\right)^{2^{n-1}}
$$

Example 2 (continued) Let's consider, as we did in Example 2, $f(x)=\sin x$, starting with $x_{1}=3$. Then

$$
f^{\prime}(x)=\cos x \quad f^{\prime \prime}(x)=-\sin x
$$

As $|-\sin x| \leq 1$, we may certainly take $M=1$.
In Example 2, all x_{n} 's were between 3 and 3.2. Since (to three decimal places)

$$
\sin (3)=0.141>0 \quad \sin (3.2)=-0.058<0
$$

we necessarily have $3<r<3.2$ and $\varepsilon_{1}=\left|x_{1}-r\right|<0.2$.
So r and all x_{n} 's and hence all c 's lie in the interval $(3,3.2)$. Since

$$
\cos (3)<-0.9 \quad \cos (3.2)<-0.9
$$

we necessarily have $\left|f^{\prime \prime}(c)\right|=|-\cos c| \geq 0.9$ and we may take $L=0.9$. So

$$
\varepsilon_{n+1} \leq \frac{2 L}{M}\left(\frac{M}{2 L} \varepsilon_{1}\right)^{2^{n-1}} \leq \frac{2 \times 0.9}{1}\left(\frac{1}{2 \times 0.9} 0.2\right)^{2^{n-1}} \leq 2\left(\frac{1}{9}\right)^{2^{n-1}}
$$

