
Newton’s Method

Newton’s method is a technique for generating numerical approximate solutions to

equations of the form f(x) = 0. For example, one can easily get a good approximation

to
√
2 by applying Newton’s method to the equation x2 − 2 = 0. This will be done in

Example 1, below.

Here is the derivation of Newton’s method. We start by simply making a guess for the

solution. For example we could base the guess on a sketch of the graph of f(x). Call the

initial guess x1. Next find the linear (tangent line) approximation to f(x) near x1. Let’s

call the linear approximation F (x). It is

F (x) = f(x1) + f ′(x1) (x− x1)

Now, instead of trying to solve f(x) = 0, we solve the linear equation F (x) = 0 and call

the solution x2.

0 = F (x) = f(x1) + f ′(x1) (x− x1) ⇐⇒ x− x1 = − f(x1)

f ′(x1)
⇐⇒ x = x2 = x1 −

f(x1)

f ′(x1)

x

y

y = f(x)

x1 x2
y = F (x)

(

x1, f(x1)
)

Now we repeat, but starting with the (second) guess x2 rather than x1. This gives

the (third) guess x3 = x2 − f(x2)
f ′(x2)

. And so on. By way of summary, Newton’s method is

1) Make a preliminary guess x1.

2) Define x2 = x1 − f(x1)
f ′(x1)

.

3) Iterate. That is, for each natural number n, once you have computed xn, define

xn+1 = xn − f(xn)
f ′(xn)

.

Example 1 In this example we compute, approximately, the square root of two by

applying Newton’s method to the equation

f(x) = x2 − 2 = 0

Since f ′(x) = 2x, Newton’s method says that we should generate approximate solutions

by iteratively applying

xn+1 = xn − f(xn)
f ′(xn)

= xn − x2

n
−2

2xn

= 1
2xn + 1

xn
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Since 12 = 1 < 2 and 22 = 4 > 2, the square root of two must be between 1 and 2, so let’s

start Newton’s method with the initial guess x1 = 1.5 Here goes:

x1 = 1.5

x2 = 1
2
x1 +

1
x1

= 1
2
(1.5) + 1

1.5

= 1.416666667

x3 = 1
2x2 +

1
x2

= 1
2 (1.416666667) +

1
1.416666667

= 1.414215686

x4 = 1
2x3 +

1
x3

= 1
2 (1.414215686) +

1
1.414215686

= 1.414213562

x5 = 1
2x4 +

1
x4

= 1
2 (1.414213562) +

1
1.414213562

= 1.414213562

Since f(1.4142135615) = −2.5 × 10−9 < 0 and f(1.4142135625) = 3.6 × 10−10 > 0 the

square root of two must be between 1.4142135615 and 1.4142135625.

Example 2 In this example we compute, approximately, π by applying Newton’s method

to the equation

f(x) = sinx = 0

starting with x1 = 3. Since f ′(x) = cosx, Newton’s method says that we should generate

approximate solutions by iteratively applying

xn+1 = xn − f(xn)
f ′(xn)

= xn − sinxn

cosxn

= xn − tanxn

Here goes
x1 = 3

x2 = x1 − tanx1 = 3− tan 3

= 3.142546543

x3 = 3.142546543− tan 3.142546543

= 3.141592653

x4 = 3.141592653− tan 3.141592653

= 3.141592654

x5 = 3.141592654− tan 3.141592654

= 3.141592654

Since f(3.1415926535) = 9.0 × 10−11 > 0 and f(3.1415926545) = −9.1 × 10−11 < 0 the

square root of two must be between 3.1415926535 and 3.1415926545.
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Example 3 This example illustrates how Newton’s method can go badly wrong if your

initial guess is not good enough. We’ll try to solve the equation

f(x) = tan−1 x = 0

starting with x1 = 1.5. Of course the solution to this equation is just x = 0. Since

f ′(x) = 1
1+x2 Newton’s method gives

xn+1 = xn − f(xn)
f ′(xn)

= xn − (1 + x2
n) tan

−1 xn

So
x1 = 1.5

x2 = 1.5− (1 + 1.52) tan−1 1.5 = −1.69

x3 = −1.69− (1 + 1.692) tan−1(−1.69) = 2.32

x4 = 2.32− (1 + 2.322) tan−1(2.32) = −5.11

x5 = −5.11− (1 + 5.112) tan−1(−5.11) = 32.3

x6 = 32.3− (1 + 32.32) tan−1(32.3) = −1575

x7 = 3, 894, 976

Here is a figure which shows what went wrong. In this figure, y = F1(x) is the tangent line

to y = tan−1 x at x = x1. Under Newton’s method, this tangent line crosses the x–axis

at x = x2. Then y = F2(x) is the tangent to y = tan−1 x at x = x2. Under Newton’s

method, this tangent line crosses the x–axis at x = x3. And so on.

The problem arose because the xn’s, and especially x1, were far enough from the

solution x = 0, that the tangent line approximations, while good approximations to f(x)

x

y

y = tan−1 x

x1

y = F1(x)

x2

y = F2(x)

x3

y = F3(x)

x4

y = F4(x)
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for x ≈ xn, were very poor approximations to f(x) for x ≈ 0. If we had started with

x1 = 0.5 instead of x1 = 1.5, Newton’s method would not have failed:

x1 = 0.5 x2 = −0.0796 x3 = 0.000335 x4 = −2.51× 10−11

Error Behaviour of Newton’s Method

Newton’s method usually works spectacularly well, provided your initial guess is rea-

sonably close to a solution of f(x) = 0. A good way to select this initial guess is to sketch

the graph of y = f(x). We now see why “Newton’s method usually works spectacularly

well, provided your initial guess is reasonably close to a solution of f(x) = 0”.

Let r be any solution of f(x) = 0. Then f(r) = 0. Suppose that we have already

computed xn. The error in xn is
∣

∣xn − r
∣

∣. We now derive a formula that relates the error

after the next step,
∣

∣xn+1 − r
∣

∣, to
∣

∣xn − r
∣

∣. We have seen in class that

f(x) = f(xn) + f ′(xn)(x− xn) +
1
2f

′(c)(x− xn)
2

for some c between xn and x. In particular, choosing x = r,

0 = f(r) = f(xn) + f ′(xn)(r − xn) +
1
2f

′(c)(r − xn)
2 (1)

By the definition of xn+1,

0 = f(xn) + f ′(xn)(xn+1 − xn) (2)

(In fact, we defined xn+1 as the solution of 0 = f(xn) + f ′(xn)(x− xn).) Subtracting (2)

from (1).

0 = f ′(xn)(r − xn+1) +
1
2f

′′(c)(r − xn)
2 ⇒ xn+1 − r = f ′′(c)

2f ′(xn)
(xn − r)2

⇒
∣

∣xn+1 − r
∣

∣ = |f ′′(c)|
2|f ′(xn)|

|xn − r|2

If the guess xn is close to r, then c, which must be between xn and r, is also close to r

and
∣

∣xn+1 − r
∣

∣ ≈ |f ′′(r)|
2|f ′(r)| |xn − r|2. Even when xn is not close to r, if we know that there

are two numbers L,M > 0 such that f obeys:

H1)
∣

∣f ′(xn)
∣

∣ ≥ L

H2)
∣

∣f ′′(c)
∣

∣ ≤ M

(we’ll see examples of this below) then we will have

∣

∣xn+1 − r
∣

∣ ≤ M
2L |xn − r|2 (3)
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Let’s denote by ε1 the error |x1 − r| of our initial guess. In fact, let’s denote by εn the

error |xn − r| in xn. Then (3) says

εn+1 ≤ M
2Lε

2
n

In particular
ε2 ≤ M

2L
ε21

ε3 ≤ M
2Lε

2
2 ≤ M

2L

(

M
2Lε

2
1

)2
=

(

M
2L

)3
ε41

ε4 ≤ M
2Lε

2
3 ≤ M

2L

(

(

M
2L

)3
ε41

)2

=
(

M
2L

)7
ε81

ε5 ≤ M
2L

ε24 ≤ M
2L

(

(

M
2L

)7
ε81

)2

=
(

M
2L

)15
ε161

By now we can see a pattern forming, that is easily verified by induction

εn ≤
(

M
2L

)2n−1−1
ε2

n−1

1 = 2L
M

(

M
2L

ε1

)2n−1

(4)

As long as M
2Lε1 < 1 (which tells us quantitatively how good our first guess has to be in

order for Newton’s method to converge), this goes to zero extremely quickly as n increases.

For example, suppose that M
2Lε1 ≤ 1

2 . Then

εn ≤ 2L
M

(

1
2

)2n−1

≤ 2L
M



























0.25 if n = 2
0.0625 if n = 3
0.0039 = 3.9× 10−3 if n = 4
0.000015 = 1.5× 10−5 if n = 5
0.00000000023 = 2.3× 10−10 if n = 6
0.000000000000000000054 = 5.4× 10−20 if n = 7

Each time you increase n by one, the number of zeroes after the decimal place roughly

doubles.

Example 1 (continued) Let’s consider, as we did in Example 1, f(x) = x2 − 2, starting

with x1 = 3
2 . Then

f ′(x) = 2x f ′′(x) = 2

So we may certainly take M = 2 and if, for example, xn ≥ 1 for all n (as happened in

Example 1), we may take L = 2 too. While we do not know what r is, we do know that

1 ≤ r ≤ 2 (since f(1) = 11 − 2 < 0 and f(2) = 22 − 2 > 0). As we took x1 = 3
2 , we have

ε1 = |x1 − r| ≤ 1
2 , so that M

2Lε1 ≤ 1
4 and

εn+1 ≤ 2L
M

(

M
2L

ε1

)2n−1

≤ 2
(

1
4

)2n−1
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Example 2 (continued) Let’s consider, as we did in Example 2, f(x) = sinx, starting

with x1 = 3. Then

f ′(x) = cosx f ′′(x) = − sinx

As | − sinx| ≤ 1, we may certainly take M = 1.

In Example 2, all xn’s were between 3 and 3.2. Since (to three decimal places)

sin(3) = 0.141 > 0 sin(3.2) = −0.058 < 0

we necessarily have 3 < r < 3.2 and ε1 = |x1 − r| < 0.2.

So r and all xn’s and hence all c’s lie in the interval (3, 3.2). Since

cos(3) < −0.9 cos(3.2) < −0.9

we necessarily have
∣

∣f ′′(c)
∣

∣ =
∣

∣− cos c
∣

∣ ≥ 0.9 and we may take L = 0.9. So

εn+1 ≤ 2L
M

(

M
2L

ε1

)2n−1

≤ 2×0.9
1

(

1
2×0.9

0.2
)2n−1

≤ 2
(

1
9

)2n−1
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