Example of a limit that does not exist

Let

$$
f(x)= \begin{cases}1 & \text { if } x \geq 0 \\ -1 & \text { if } x<0\end{cases}
$$

I claim that $\lim _{x \rightarrow 0} f(x)$ does not exist. To justify this claim, I will show that no matter what number L you pick, $\lim _{x \rightarrow 0} f(x)$ does not take the value L. Recall that, in order to have $\lim _{x \rightarrow 0} f(x)=L, f(x)$ must approach L whenever x approachs 0 .

- As an example, let $L=\frac{1}{2}$. Then, for all negative values of x, no matter how small, $f(x)$ takes the value -1 , which is nowhere near $L=\frac{1}{2}$. So x can approach zero without $f(x)$ approaching $\frac{1}{2}$ at the same time. So $\lim _{x \rightarrow 0} f(x)$ cannot be $\frac{1}{2}$.
- Now consider any $L \geq 0$. Again, for all negative values of x, no matter how small, $f(x)$ takes the value -1 , which is still nowhere near the positive number L. So $f(x)$ does not approach L as x tends to zero from the left hand side.
- Finally consider any $L<0$. Now, for all positive values of x, no matter how small, $f(x)$ takes the value +1 , which is nowhere near the negative number L. So, as x tends to zero from the right hand side, $f(x)$ does not approach this L either.
We have shown that no matter what L you pick, it is possible for x to approach zero without $f(x)$ approaching L. So, no matter what L you pick, $\lim _{x \rightarrow 0} f(x)$ does not take the value L. So $\lim _{x \rightarrow 0} f(x)$ does not exist.

