Error Formulae for Taylor Polynomial Approximations

Let

$$
P_{n}(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\cdots+\frac{1}{n!} f^{(n)}\left(x_{0}\right)\left(x-x_{0}\right)^{n}
$$

be the Taylor polynomial of degree n for the function $f(x)$ and expansion point x_{0}. Using this polynomial to approximate $f(x)$ introduces an error

$$
E_{n}(x)=f(x)-P_{n}(x)
$$

We shall now prove that

$$
\begin{equation*}
E_{n}(x)=\frac{1}{(n+1)!} f^{(n+1)}(c)\left(x-x_{0}\right)^{n+1} \tag{n}
\end{equation*}
$$

for some c between x_{0} and x and that

$$
\begin{equation*}
E_{n}(x)=\frac{1}{n!} \int_{x_{0}}^{x}(x-t)^{n} f^{(n+1)}(t) d t \tag{n}
\end{equation*}
$$

Neither (2_{n}) nor the proofs are part of the official course. It rarely necessary, or even possible, to evaluate $E_{n}(x)$ exactly. It is usually sufficient to find a number M such that $\left|f^{(n+1)}(c)\right| \leq M$ for all c between x_{0} and the x of interest. Both $\left(1_{\mathrm{n}}\right)$ and $\left(2_{\mathrm{n}}\right)$ then imply that $\left|E_{n}(x)\right| \leq \frac{1}{(n+1)!} M\left|x-x_{0}\right|^{n+1}$.

Both $\left(1_{\mathrm{n}}\right)$ and $\left(2_{\mathrm{n}}\right)$ are easily proven in the special case $n=0$. When $n=0,\left(1_{\mathrm{n}}\right)$ and $\left(2_{\mathrm{n}}\right)$ are the statements that

$$
\begin{equation*}
f(x)-f\left(x_{0}\right)=f^{\prime}(c)\left(x-x_{0}\right) \tag{0}
\end{equation*}
$$

for some c between x_{0} and x and that

$$
\begin{equation*}
f(x)-f\left(x_{0}\right)=\int_{x_{0}}^{x} f^{\prime}(t) d t \tag{0}
\end{equation*}
$$

So $\left(1_{0}\right)$ is just a restatement of the mean-value theorem and $\left(2_{0}\right)$ is just a restatement of part of the fundamental theorem of calculus.

To prove (1_{n}) with $n \geq 1$, we need the following small generalization of the mean-value theorem.

Theorem (Generalized Mean-Value Theorem) Let the functions $F(x)$ and $G(x)$ both be defined and continuous on $a \leq x \leq b$ and both be differentiable on $a<x<b$. Furthermore, suppose that $G^{\prime}(x) \neq 0$ for all $a<x<b$. Then, there is a number c obeying $a<c<b$ such that

$$
\frac{F(b)-F(a)}{G(b)-G(a)}=\frac{F^{\prime}(c)}{G^{\prime}(c)}
$$

Proof: Define

$$
h(x)=[F(b)-F(a)][G(x)-G(a)]-[F(x)-F(a)][G(b)-G(a)]
$$

Observe that $h(a)=h(b)=0$. So, by the mean-value theorem, there is a number cobeying $a<c<b$ such that

$$
0=h^{\prime}(c)=[F(b)-F(a)] G^{\prime}(c)-F^{\prime}(c)[G(b)-G(a)]
$$

As $G(a) \neq G(b)$ (otherwise the mean-value theorem would imply the existence of an $a<x<b$ obeying $G^{\prime}(x)=0$), we may divide by $G^{\prime}(c)[G(b)-G(a)]$ which gives the desired result.

Proof of $\left(\mathbf{1}_{\mathbf{n}}\right)$: To prove $\left(1_{1}\right)$, that is $\left(1_{\mathrm{n}}\right)$ for $n=1$, simply apply the generalized mean-value theorem with $F(x)=f(x)-f\left(x_{0}\right)-f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right), G(x)=\left(x-x_{0}\right)^{2}, a=x_{0}$ and $b=x$. Then $F(a)=G(a)=0$, so that

$$
\frac{F(b)}{G(b)}=\frac{F^{\prime}(\tilde{c})}{G^{\prime}(\tilde{c})} \Rightarrow \frac{f(x)-f\left(x_{0}\right)-f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)}{\left(x-x_{0}\right)^{2}}=\frac{f^{\prime}(\tilde{c})-f^{\prime}\left(x_{0}\right)}{2\left(\tilde{c}-x_{0}\right)}
$$

for some \tilde{c} between x_{0} and x. By the mean-value theorem (the standard one, but with $f(x)$ replaced by $\left.f^{\prime}(x)\right), \frac{f^{\prime}(\tilde{c})-f^{\prime}\left(x_{0}\right)}{\tilde{c}-x_{0}}=f^{\prime \prime}(c)$, for some t between x_{0} and \tilde{c} (which forces \tilde{c} to also be between x_{0} and x). Hence

$$
\frac{f(x)-f\left(x_{0}\right)-f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)}{\left(x-x_{0}\right)^{2}}=\frac{1}{2} f^{\prime \prime}(c)
$$

which is exactly $\left(1_{1}\right)$.
At this stage, we know that $\left(1_{n}\right)$ applies to all (sufficiently differentiable) functions for $n=0$ and $n=1$. To prove it for general n, we proceed by induction. That is, we assume that we already know that $\left(1_{\mathrm{n}}\right)$ applies to $n=k-1$ for some k (as is the case for $k=1,2)$ and that we wish to prove that it also applies to $n=k$. We apply the generalized mean-value theorem with $F(x)=E_{k}(x), G(x)=\left(x-x_{0}\right)^{k+1}, a=x_{0}$ and $b=x$. Then $F(a)=G(a)=0$, so that

$$
\frac{F(b)}{G(b)}=\frac{F^{\prime}(\tilde{c})}{G^{\prime}(\tilde{c})} \Rightarrow \frac{E_{k}(x)}{\left(x-x_{0}\right)^{k+1}}=\frac{E_{k}^{\prime}(\tilde{c})}{(k+1)\left(\tilde{c}-x_{0}\right)^{k}}
$$

But

$$
\begin{aligned}
E_{k}^{\prime}(\tilde{c}) & =\frac{d}{d x}\left[f(x)-f\left(x_{0}\right)-f^{\prime}\left(x_{0}\right)-\cdots-\frac{1}{k!} f^{(k)}\left(x_{0}\right)\left(x-x_{0}\right)^{k}\right]_{x=\tilde{c}} \\
& =\left[f^{\prime}(x)-f^{\prime}\left(x_{0}\right)-\cdots-\frac{1}{(k-1)!} f^{(k)}\left(x_{0}\right)\left(x-x_{0}\right)^{k-1}\right]_{x=\tilde{c}} \\
& =f^{\prime}(\tilde{c})-f^{\prime}\left(x_{0}\right)-\cdots-\frac{1}{(k-1)!} f^{(k)}\left(x_{0}\right)\left(\tilde{c}-x_{0}\right)^{k-1}
\end{aligned}
$$

The last expression is exactly the definition of $E_{k-1}(\tilde{c})$, but for the function $f^{\prime}(x)$, instead of the function $f(x)$. But we already know that $\left(1_{k-1}\right)$ is true, so we already know that the last expression equals

$$
E_{k}^{\prime}(\tilde{c})=E_{k-1}(\tilde{c})=\frac{1}{(k-1+1)!}\left(f^{\prime}\right)^{(k-1+1)}(c)\left(\tilde{c}-x_{0}\right)^{k-1+1}=\frac{1}{k!} f^{(k+1)}(c)\left(\tilde{c}-x_{0}\right)^{k}
$$

for some c between x_{0} and \tilde{c}. Subbing this in

$$
\frac{E_{k}(x)}{\left(x-x_{0}\right)^{k+1}}=\frac{E_{k}^{\prime}(\tilde{c})}{(k+1)\left(\tilde{c}-x_{0}\right)^{k}}=\frac{1}{(k+1)!} f^{(k+1)}(c)
$$

which is exactly $\left(1_{k}\right)$. Repeating this for $k=2,3,4, \cdots$ gives $\left(1_{k}\right)$ for all k.

Proof of ($\mathbf{2}_{\mathbf{n}}$): We again proceed by induction. That is, we assume that we already know that $\left(2_{\mathrm{n}}\right)$ applies to $n=k-1$ for some k (as is the case for $k=1$) and we then prove that it also applies to $n=k$. So we are assuming that

$$
E_{k-1}(x)=\frac{1}{(k-1)!} \int_{x_{0}}^{x}(x-t)^{k-1} f^{(k)}(t) d t
$$

Integrate by parts with $u(t)=f^{(k)}(t)$ and $v^{\prime}(t) d t=\frac{(x-t)^{k-1}}{(k-1)!} d t$. Note that t is now the integration variable and x is just some constant. So $u^{\prime}(t) d t=f^{(k+1)}(t) d t$ and we may take $v(t)=-\frac{1}{k!}(x-t)^{k}$. This gives

$$
\begin{aligned}
E_{k-1}(x) & =-\left.\frac{1}{k!}(x-t)^{k} f^{(k)}(t)\right|_{t=x_{0}} ^{t=x}+\frac{1}{k!} \int_{x_{0}}^{x}(x-t)^{k} f^{(k+1)}(t) d t \\
& =\frac{1}{k!}\left(x-x_{0}\right)^{k} f^{(k)}\left(x_{0}\right)+\frac{1}{k!} \int_{x_{0}}^{x}(x-t)^{k} f^{(k+1)}(t) d t
\end{aligned}
$$

Since

$$
\begin{aligned}
E_{k}(x) & =f(x)-P_{k}(x)=f(x)-P_{k-1}(x)-\frac{1}{k!}\left(x-x_{0}\right)^{k} f^{(k)}\left(x_{0}\right) \\
& =E_{k-1}(x)-\frac{1}{k!}\left(x-x_{0}\right)^{k} f^{(k)}\left(x_{0}\right)
\end{aligned}
$$

we have

$$
E_{k}(x)=\frac{1}{k!} \int_{x_{0}}^{x}(x-z)^{k} f^{(k+1)}(t) d t
$$

which is exactly $\left(2_{k}\right)$. Repeating this for $k=2,3,4, \cdots$ gives $\left(2_{k}\right)$ for all k.

