## Evaluating Limits Using Taylor Expansions

Taylor polynomials provide a good way to understand the behaviour of a function near a specified point and so are useful for evaluating complicated limits. We'll see examples of this later in these notes.

We'll just start by recalling that if, for some natural number $n$, the function $f(x)$ has $n+1$ derivatives near the point $x_{0}$, then

$$
f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\cdots+\frac{1}{n!} f^{(n)}\left(x_{0}\right)\left(x-x_{0}\right)^{n}+E_{n}(x)
$$

where

$$
P_{n}(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\cdots+\frac{1}{n!} f^{(n)}\left(x_{0}\right)\left(x-x_{0}\right)^{n}
$$

is the Taylor polynomial of degree $n$ for the function $f(x)$ and expansion point $x_{0}$ and

$$
E_{n}(x)=f(x)-P_{n}(x)=\frac{1}{(n+1)!} f^{(n+1)}(c)\left(x-x_{0}\right)^{n+1}
$$

is the error introduced when we approximate $f(x)$ by the polynomial $P_{n}(x)$. Here $c$ is some unknown number between $x_{0}$ and $x$. As $c$ is not known, we do not know exactly what the error $E_{n}(x)$ is. But that is usually not a problem. In taking the limit $x \rightarrow x_{0}$, we are only interested in $x$ 's that are very close to $x_{0}$, and when $x$ is very close $x_{0}, c$ must also be very close to $x_{0}$. As long as $f^{(n+1)}(x)$ is continuous at $x_{0}, f^{(n+1)}(c)$ must approach $f^{(n)}\left(x_{0}\right)$ as $x \rightarrow x_{0}$. In particular there must be constants $M, D>0$ such that $\left|f^{(n+1)}(c)\right| \leq M$ for all $c$ 's within a distance $D$ of $x_{0}$. If so, there is another constant $C$ (namely $\frac{M}{(n+1)!}$ ) such that

$$
\left|E_{n}(x)\right| \leq C\left|x-x_{0}\right|^{n+1} \quad \text { whenever }\left|x-x_{0}\right| \leq D
$$

There is some notation for this behavour.

Definition 1 (Big O) We say " $F(x)$ is of order $\left|x-x_{0}\right|^{m}$ near $x_{0}$ " and we write $F(x)=O\left(\left|x-x_{0}\right|^{m}\right)$ if there exist constants $C, D>0$ such that

$$
\begin{equation*}
|F(x)| \leq C\left|x-x_{0}\right|^{m} \quad \text { whenever }\left|x-x_{0}\right| \leq D \tag{1}
\end{equation*}
$$

Whenever $O\left(\left|x-x_{0}\right|^{m}\right)$ appears within an algebraic expression, it just stands for some (unknown) function $F(x)$ that obeys (1). This is called "big O" notation. Here are some examples.

Example 2 Let $f(x)=\sin x$ and $x_{0}=0$. Then

$$
\begin{array}{lllll}
f(x)=\sin x & f^{\prime}(x)=\cos x & f^{\prime \prime}(x)=-\sin x & f^{(3)}(x)=-\cos x & f^{(4)}(x)=\sin x
\end{array} \quad \ldots .
$$

and the pattern repeats. Thus $\left|f^{(n+1)}(c)\right| \leq 1$ for all $c$. So the Taylor polynomial of, for example, degree 4 and its error term are

$$
\begin{aligned}
\sin x & =x-\frac{1}{3!} x^{3}+\frac{\cos c}{5!} x^{5} \\
& =x-\frac{1}{3!} x^{3}+O\left(|x|^{5}\right)
\end{aligned}
$$

under Definition 1, with $C=\frac{1}{5!}$ and any $D>0$. Similarly, for any natural number $n$,

$$
\begin{aligned}
& \sin x=x-\frac{1}{3!} x^{3}+\frac{1}{5!} x^{5}-\cdots+(-1)^{n} \frac{1}{(2 n+1)!} x^{2 n+1}+O\left(|x|^{2 n+3}\right) \\
& \cos x=1-\frac{1}{2!} x^{2}+\frac{1}{4!} x^{4}-\cdots+(-1)^{n} \frac{1}{(2 n)!} x^{2 n}+O\left(|x|^{2 n+2}\right)
\end{aligned}
$$

Example 3 Let $n$ be any natural number. We have seen that, since $\frac{d^{m}}{d x^{m}} e^{x}=e^{x}$ for every integer $m \geq 0$,

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots+\frac{x^{n}}{n!}+\frac{e^{c}}{(n+1)!} x^{n+1}
$$

for some $c$ between 0 and $x$. If, for example, $|x| \leq 1$, then $\left|e^{c}\right| \leq e$, so that the error term

$$
\left|\frac{e^{c}}{(n+1)!} x^{n+1}\right| \leq C|x|^{n+1} \quad \text { with } C=\frac{e}{(n+1)!} \quad \text { whenever }|x| \leq 1
$$

So, under Definition 1, with $C=\frac{e}{(n+1)!}$ and $D=1$,

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots+\frac{x^{n}}{n!}+O\left(|x|^{n+1}\right)
$$

Example 4 Let $f(x)=\ln (1+x)$ and $x_{0}=0$. Then

$$
\begin{array}{lllll}
f^{\prime}(x)=\frac{1}{1+x} & f^{\prime \prime}(x)=-\frac{1}{(1+x)^{2}} & f^{(3)}(x)=\frac{2}{(1+x)^{3}} & f^{(4)}(x)=-\frac{2 \times 3}{(1+x)^{4}} & f^{(5)}(x)=\frac{2 \times 3 \times 4}{(1+x)^{5}} \\
f^{\prime}(0)=1 & f^{\prime \prime}(0)=-1 & f^{(3)}(0)=2 & f^{(4)}(0)=-3! & f^{(5)}(0)=4!
\end{array}
$$

For any natural number $n$,

$$
f^{(n)}(x)=(-1)^{n-1} \frac{(n-1)!}{(1+x)^{n}} \quad \frac{1}{n!} f^{(n)}(0) x^{n}=(-1)^{n-1} \frac{(n-1)!}{n!} x^{n}=(-1)^{n-1} \frac{x^{n}}{n}
$$

so

$$
\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots+(-1)^{n-1} \frac{x^{n}}{n}+E_{n}(x)
$$

(c) Joel Feldman. 2012. All rights reserved. November 4, 2012 Evaluating Limits Using Taylor Expansions 2
with

$$
E_{n}(x)=\frac{1}{(n+1)!} f^{(n+1)}(c)\left(x-x_{0}\right)^{n+1}=(-1)^{n} \frac{1}{(n+1)(1+c)^{n+1}} x^{n+1}
$$

If we choose, for example $D=\frac{1}{2}$, then for any $x$ obeying $|x| \leq \frac{1}{2}$, we have $|c| \leq \frac{1}{2}$ and $|1+c| \geq \frac{1}{2}$ so that

$$
\left|E_{n}(x)\right| \leq \frac{1}{(n+1)(1 / 2)^{n+1}}|x|^{n+1}=O\left(|x|^{n+1}\right)
$$

under Definition 1, with $C=\frac{2^{n+1}}{n+1}$ and $D=1$. Thus we may write

$$
\begin{equation*}
\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots+(-1)^{n-1} \frac{x^{n}}{n}+O\left(|x|^{n+1}\right) \tag{2}
\end{equation*}
$$

Example 5 In this example we'll use the Taylor polynomial of Example 4 to evaluate $\lim _{x \rightarrow 0} \frac{\ln (1+x)}{x}$ and $\lim _{x \rightarrow 0}(1+x)^{a / x}$. The Taylor expansion (2) with $n=1$ tells us that

$$
\ln (1+x)=x+O\left(|x|^{2}\right)
$$

That is, for small $x, \ln (1+x)$ is the same as $x$, up to an error that is bounded by some constant times $x^{2}$. So, dividing by $x, \frac{1}{x} \ln (1+x)$ is the same as 1 , up to an error that is bounded by some constant times $|x|$. That is

$$
\frac{1}{x} \ln (1+x)=1+O(|x|)
$$

But any function that is bounded by some constant times $|x|$, for all $x$ smaller than some constant $D>0$, necessarily tends to 0 as $x \rightarrow 0$. Thus

$$
\lim _{x \rightarrow 0} \frac{\ln (1+x)}{x}=\lim _{x \rightarrow 0} \frac{x+O\left(|x|^{2}\right)}{x}=\lim _{x \rightarrow 0}[1+O(|x|)]=1
$$

and

$$
\lim _{x \rightarrow 0}(1+x)^{a / x}=\lim _{x \rightarrow 0} e^{\frac{a}{x} \ln (1+x)}=\lim _{x \rightarrow 0} e^{\frac{a}{x}\left[x+O\left(|x|^{2}\right)\right]}=\lim _{x \rightarrow 0} e^{a+O(|x|)}=e^{a}
$$

Here we have used if $F(x)=O\left(|x|^{2}\right)$, that is if $|F(x)| \leq C|x|^{2}$ for some constant $C$, then $\left|\frac{a}{x} F(x)\right| \leq C^{\prime}|x|$ for the new constant $C^{\prime}=|a| C$, so that $F(x)=O(|x|)$.

Remark 6 The big O notation has a few properties that are useful in computations and taking limits. All follow immediately from Definition 1.
(1) If $p>0$, then $\lim _{x \rightarrow 0} O\left(|x|^{p}\right)=0$.
(2) For any real numbers $p$ and $q, O\left(|x|^{p}\right) O\left(|x|^{q}\right)=O\left(|x|^{p+q}\right)$.
(This is just because $C|x|^{p} \times C^{\prime}|x|^{q}=\left(C C^{\prime}\right)|x|^{p+q}$.)
In particular, $a x^{m} O\left(|x|^{p}\right)=O\left(|x|^{p+m}\right)$, for any constant $a$ and any integer $m$.
(3) For any real numbers $p$ and $q, O\left(|x|^{p}\right)+O\left(|x|^{q}\right)=O\left(|x|^{\min \{p, q\}}\right)$.
(For example, if $p=2$ and $q=5$, then $C|x|^{2}+C^{\prime}|x|^{5}=\left(C+C^{\prime}|x|^{3}\right)|x|^{2} \leq\left(C+C^{\prime}\right)|x|^{2}$ whenever $|x| \leq 1$.)
(4) For any real numbers $p$ and $q$ with $p>q$, any function which is $O\left(|x|^{p}\right)$ is also $O\left(|x|^{q}\right)$ because $C|x|^{p}=C|x|^{p-q}|x|^{q} \leq C|x|^{q}$ whenever $|x| \leq 1$.

Example 7 In this example we'll evaluate the harder limit

$$
\lim _{x \rightarrow 0} \frac{\cos x-1+\frac{1}{2} x \sin x}{[\ln (1+x)]^{4}}
$$

Using Examples 2 and 4,

$$
\begin{align*}
\lim _{x \rightarrow 0} \frac{\cos x-1+\frac{1}{2} x \sin x}{[\ln (1+x)]^{4}} & =\lim _{x \rightarrow 0} \frac{\left[1-\frac{1}{2} x^{2}+\frac{1}{4!} x^{4}+O\left(x^{6}\right)\right]-1+\frac{1}{2} x\left[x-\frac{1}{3!} x^{3}+O\left(|x|^{5}\right)\right]}{\left[x+O\left(x^{2}\right)\right]^{4}} \\
& =\lim _{x \rightarrow 0} \frac{\left(\frac{1}{4!}-\frac{1}{2 \times 3!}\right) x^{4}+O\left(x^{6}\right)+\frac{x}{2} O\left(|x|^{5}\right)}{\left[x+O\left(x^{2}\right)\right]^{4}} \\
& =\lim _{x \rightarrow 0} \frac{\left(\frac{1}{4!}-\frac{1}{2 \times 3!}\right) x^{4}+O\left(x^{6}\right)+O\left(x^{6}\right)}{\left[x+O\left(x^{2}\right)\right]^{4}} \quad \text { by Remark 6, part (2) }  \tag{2}\\
& =\lim _{x \rightarrow 0} \frac{\left(\frac{1}{\left.4!-\frac{1}{2 \times 3!}\right) x^{4}+O\left(x^{6}\right)}\right.}{[x+x O(|x|)]^{4}} \quad \text { by Remark 6, parts (2), (3) }  \tag{3}\\
& =\lim _{x \rightarrow 0} \frac{\left(\frac{1}{4!}-\frac{1}{2 \times 3!}\right) x^{4}+x^{4} O\left(x^{2}\right)}{x^{4}[1+O(|x|)]^{4}} \quad \text { by Remark 6, part (2) }  \tag{2}\\
& =\lim _{x \rightarrow 0} \frac{\left(\frac{1}{\left.4!-\frac{1}{2 \times 3!}\right)+O\left(x^{2}\right)}\right.}{[1+O(|x|)]^{4}} \\
& =\frac{1}{4!}-\frac{1}{2 \times 3!} \quad  \tag{1}\\
& =\frac{1}{3!}\left(\frac{1}{4}-\frac{1}{2}\right)=-\frac{1}{4!} \quad \text { by Remark 6, part (1) }
\end{align*}
$$

