
Evaluating Limits Using Taylor Expansions

Taylor polynomials provide a good way to understand the behaviour of a function near

a specified point and so are useful for evaluating complicated limits. We’ll see examples of

this later in these notes.

We’ll just start by recalling that if, for some natural number n, the function f(x) has

n+ 1 derivatives near the point x0, then

f(x) = f(x0) + f ′(x0) (x− x0) + · · ·+ 1
n!f

(n)(x0) (x− x0)
n +En(x)

where

Pn(x) = f(x0) + f ′(x0) (x− x0) + · · ·+ 1
n!
f (n)(x0) (x− x0)

n

is the Taylor polynomial of degree n for the function f(x) and expansion point x0 and

En(x) = f(x)− Pn(x) =
1

(n+1)!f
(n+1)(c) (x− x0)

n+1

is the error introduced when we approximate f(x) by the polynomial Pn(x). Here c is some

unknown number between x0 and x. As c is not known, we do not know exactly what the

error En(x) is. But that is usually not a problem. In taking the limit x → x0, we are only

interested in x’s that are very close to x0, and when x is very close x0, c must also be very

close to x0. As long as f (n+1)(x) is continuous at x0, f
(n+1)(c) must approach f (n)(x0) as

x → x0. In particular there must be constants M,D > 0 such that
∣

∣f (n+1)(c)
∣

∣ ≤ M for all

c’s within a distance D of x0. If so, there is another constant C (namely M
(n+1)!

) such that

∣

∣En(x)
∣

∣ ≤ C|x− x0|
n+1 whenever |x− x0| ≤ D

There is some notation for this behavour.

Definition 1 (Big O) We say “F (x) is of order |x − x0|
m near x0” and we write

F (x) = O
(

|x− x0|
m
)

if there exist constants C,D > 0 such that

∣

∣F (x)
∣

∣ ≤ C|x− x0|
m whenever |x− x0| ≤ D (1)

Whenever O
(

|x − x0|
m
)

appears within an algebraic expression, it just stands for some

(unknown) function F (x) that obeys (1). This is called “big O” notation. Here are some

examples.

c© Joel Feldman. 2012. All rights reserved. November 4, 2012 Evaluating Limits Using Taylor Expansions 1



Example 2 Let f(x) = sinx and x0 = 0. Then

f(x) = sinx f ′(x) = cosx f ′′(x) = − sinx f (3)(x) = − cosx f (4)(x) = sinx · · ·

f(0) = 0 f ′(0) = 1 f ′′(0) = 0 f (3)(0) = −1 f (4)(0) = 0 · · ·

and the pattern repeats. Thus
∣

∣f (n+1)(c)
∣

∣ ≤ 1 for all c. So the Taylor polynomial of, for

example, degree 4 and its error term are

sinx = x− 1
3!
x3 + cos c

5!
x5

= x− 1
3!x

3 +O(|x|5)

under Definition 1, with C = 1
5! and any D > 0. Similarly, for any natural number n,

sinx = x− 1
3!x

3 + 1
5!x

5 − · · ·+ (−1)n 1
(2n+1)!x

2n+1 +O
(

|x|2n+3
)

cosx = 1− 1
2!
x2 + 1

4!
x4 − · · ·+ (−1)n 1

(2n)!
x2n +O

(

|x|2n+2
)

Example 3 Let n be any natural number. We have seen that, since dm

dxm
ex = ex for every

integer m ≥ 0,

ex = 1 + x+ x2

2!
+ x3

3!
+ · · ·+ xn

n!
+ ec

(n+1)!
xn+1

for some c between 0 and x. If, for example, |x| ≤ 1, then |ec| ≤ e, so that the error term

∣

∣

ec

(n+1)!x
n+1

∣

∣ ≤ C|x|n+1 with C = e
(n+1)! whenever |x| ≤ 1

So, under Definition 1, with C = e
(n+1)!

and D = 1,

ex = 1 + x+ x2

2!
+ x3

3!
+ · · ·+ xn

n!
+O

(

|x|n+1
)

Example 4 Let f(x) = ln(1 + x) and x0 = 0. Then

f ′(x) = 1
1+x f ′′(x) = − 1

(1+x)2 f (3)(x) = 2
(1+x)3 f (4)(x) = − 2×3

(1+x)4 f (5)(x) = 2×3×4
(1+x)5

f ′(0) = 1 f ′′(0) = −1 f (3)(0) = 2 f (4)(0) = −3! f (5)(0) = 4!

For any natural number n,

f (n)(x) = (−1)n−1 (n−1)!
(1+x)n

1
n!f

(n)(0) xn = (−1)n−1 (n−1)!
n! xn = (−1)n−1 xn

n

so

ln(1 + x) = x− x2

2 + x3

3 − · · ·+ (−1)n−1 xn

n +En(x)
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with

En(x) =
1

(n+1)!f
(n+1)(c) (x− x0)

n+1 = (−1)n 1
(n+1)(1+c)n+1 x

n+1

If we choose, for example D = 1
2 , then for any x obeying |x| ≤ 1

2 , we have |c| ≤ 1
2 and

|1 + c| ≥ 1
2
so that

|En(x)| ≤
1

(n+1)(1/2)n+1 |x|
n+1 = O

(

|x|n+1
)

under Definition 1, with C = 2n+1

n+1 and D = 1. Thus we may write

ln(1 + x) = x− x2

2
+ x3

3
− · · ·+ (−1)n−1 xn

n
+O

(

|x|n+1
)

(2)

Example 5 In this example we’ll use the Taylor polynomial of Example 4 to evaluate

lim
x→0

ln(1+x)
x

and lim
x→0

(1 + x)a/x. The Taylor expansion (2) with n = 1 tells us that

ln(1 + x) = x+O(|x|2)

That is, for small x, ln(1 + x) is the same as x, up to an error that is bounded by some

constant times x2. So, dividing by x, 1
x
ln(1 + x) is the same as 1, up to an error that is

bounded by some constant times |x|. That is

1
x ln(1 + x) = 1 +O(|x|)

But any function that is bounded by some constant times |x|, for all x smaller than some

constant D > 0, necessarily tends to 0 as x → 0. Thus

lim
x→0

ln(1+x)
x = lim

x→0

x+O(|x|2)
x = lim

x→0

[

1 +O(|x|)
]

= 1

and

lim
x→0

(1 + x)a/x = lim
x→0

e
a

x
ln(1+x) = lim

x→0
e

a

x
[x+O(|x|2)] = lim

x→0
ea+O(|x|) = ea

Here we have used if F (x) = O(|x|2), that is if |F (x)| ≤ C|x|2 for some constant C, then
∣

∣

a
x
F (x)

∣

∣ ≤ C′|x| for the new constant C′ = |a|C, so that F (x) = O(|x|).

Remark 6 The big O notation has a few properties that are useful in computations and

taking limits. All follow immediately from Definition 1.

(1) If p > 0, then lim
x→0

O(|x|p) = 0.

(2) For any real numbers p and q, O(|x|p)O(|x|q) = O(|x|p+q).

(This is just because C|x|p × C′|x|q = (CC′)|x|p+q.)

In particular, axmO(|x|p) = O(|x|p+m), for any constant a and any integer m.

(3) For any real numbers p and q, O(|x|p) +O(|x|q) = O(|x|min{p,q}).

(For example, if p = 2 and q = 5, then C|x|2+C′|x|5 =
(

C+C′|x|3
)

|x|2 ≤ (C+C′)|x|2

whenever |x| ≤ 1.)

(4) For any real numbers p and q with p > q, any function which is O(|x|p) is also O(|x|q)

because C|x|p = C|x|p−q|x|q ≤ C|x|q whenever |x| ≤ 1.
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Example 7 In this example we’ll evaluate the harder limit

lim
x→0

cosx− 1 + 1
2x sinx

[ln(1 + x)]4

Using Examples 2 and 4,

lim
x→0

cosx− 1 + 1
2x sinx

[ln(1 + x)]4
= lim

x→0

[

1− 1
2
x2 + 1

4!
x4 +O(x6)

]

− 1 + 1
2
x
[

x− 1
3!
x3 +O(|x|5)

]

[x+O(x2)]4

= lim
x→0

( 1
4!
− 1

2×3!
)x4 +O(x6) + x

2
O(|x|5)

[x+O(x2)]4

= lim
x→0

( 1
4!
− 1

2×3!
)x4 +O(x6) +O(x6)

[x+O(x2)]4
by Remark 6, part (2)

= lim
x→0

( 1
4! −

1
2×3!)x

4 +O(x6)

[x+ xO(|x|)]4
by Remark 6, parts (2), (3)

= lim
x→0

( 1
4! −

1
2×3!)x

4 + x4O(x2)

x4[1 +O(|x|)]4
by Remark 6, part (2)

= lim
x→0

( 1
4!
− 1

2×3!
) +O(x2)

[1 +O(|x|)]4

= 1
4! −

1
2×3! by Remark 6, part (1)

= 1
3!

(

1
4 − 1

2

)

= − 1
4!
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