
The RLC Circuit

The RLC circuit is the electrical circuit consisting of a resistor of resistance R, a coil of

inductance L, a capacitor of capacitance C and a voltage source arranged in series. If the charge

C R

L

V

on the capacitor is Q and the current flowing in the circuit is I, the voltage across R, L and C are

RI, LdI
dt and Q

C respectively. By the Kirchhoff’s law that says that the voltage between any two

points has to be independent of the path used to travel between the two points,

LI ′(t) + RI(t) + 1
CQ(t) = V (t)

Assuming that R, L, C and V are known, this is still one differential equation in two unknowns, I

and Q. However the two unknowns are related by I(t) = dQ
dt (t) so that

LQ′′(t) +RQ′(t) + 1
CQ(t) = V (t)

or, differentiating with respect to t and then subbing in dQ
dt

(t) = I(t),

LI ′′(t) +RI ′(t) + 1
C I(t) = V ′(t)

For an ac voltage source, choosing the origin of time so that V (0) = 0, V (t) = E0 sin(ωt) and the

differential equation becomes

LI ′′(t) +RI ′(t) + 1
C
I(t) = ωE0 cos(ωt) (1)

The General Solution

We first guess one solution of (1) by trying Ip(t) = A sin(ωt− ϕ) with the amplitude A and

phase ϕ to be determined. That is, we are guessing that the circuit responds to an oscillating applied

voltage with a current that oscillates with the same rate. For Ip(t) to be a solution, we need

LI ′′p (t) + RI ′p(t) +
1
C
Ip(t) = ωE0 cos(ωt) (1p)

−Lω2A sin(ωt− ϕ) +RωA cos(ωt− ϕ) + 1
C
A sin(ωt− ϕ) = ωE0 cos(ωt)

= ωE0 cos(ωt− ϕ+ ϕ)

and hence

(

1
C
− Lω2

)

A sin(ωt− ϕ) +RωA cos(ωt− ϕ) = ωE0 cos(ϕ) cos(ωt− ϕ)− ωE0 sin(ϕ) sin(ωt− ϕ)
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Matching coefficients of sin(ωt− ϕ) and cos(ωt− ϕ) on the left and right hand sides gives
(

Lω2 − 1
C

)

A = ωE0 sin(ϕ) (2)

RωA = ωE0 cos(ϕ) (3)

It is now easy to solve for A and ϕ

(2)

(3)
=⇒ tan(ϕ) =

Lω2 − 1
C

Rω
=⇒ ϕ = tan−1

(Lω

R
− 1

RCω

)

√

(2)2 + (3)2 =⇒
√

(

Lω2 − 1
C

)2
+R2ω2 A = ωE0 =⇒ A =

ωE0
√

(

Lω2 − 1
C

)2
+R2ω2

(4)

Naturally, different input frequencies ω give different output amplitudes A. Here is a graph of A

against ω, with all other parameters held fixed.

ω

A

Note that there is a small range of frequencies that give a large amplitude response. This is the

phenomenon of resonance. It has been dramatically illustrated in, for example, the collapse of the

Tacoma narrows bridge.

Now back to finding the general solution. Note that subtracting (1p) from (1) gives

L(I − Ip)
′′(t) +R(I − Ip)

′(t) + 1
C
(I − Ip)(t) = 0

That is, any solution of (1) differs from Ip(t) by a solution of

LI ′′(t) + RI ′(t) + 1
C
I(t) = 0 (1c)

This is called the complementary homogeneous equation for (1). We now guess many solutions to

(1c) by trying I(t) = ert, with the constant r to the determined. This guess is a solution of (1c) if

and only if

Lr2ert +Rrert + 1
C ert = 0 ⇐⇒ Lr2 +Rr + 1

C = 0 ⇐⇒ r =
−R±

√
R2−4L/C

2L ≡ r1,2 (5)

We now know that er1t and er2t both obey (1c). Because (1c) is linear and homogeneous, this forces

c1e
r1t+ c2e

r2t to also be a solution, for any values of the constants c1 and c2. (To check this, just sub

c1e
r1t + c2e

r2t into (1c).) Assuming that R2 6= 4L/C, r1 and r2 are different and the general solution

to (1c) is c1e
r1t + c2e

r2t. (It is reasonable to guess that, to solve a differential equation involving

a second derivative, one has to integrate twice so that the general solution contains two arbitrary

constants.) Then, the general solution of (1) is

I(t) = c1e
r1t + c2e

r2t + A sin(ωt− ϕ)

with r1, r2 given in (5) and A, ϕ given in (4). The arbitrary constants c1 and c2 are determined by

initial conditions. However, when er1t and er2t damp out quickly, as is often the case, their values are

not very important.
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