
Approximating Functions Near a Specified Point

Suppose that you are interested in the values of some function f(x) for x near some fixed point x0.
The function is too complicated to work with directly. So you wish to work instead with some other function
F (x) that is both simple and a good approximation to f(x) for x near x0. We’ll consider a couple of examples
of this scenario later. First, we develop several different approximations.

First approximation

The simplest functions are those that are constants. The first approximation will be by a constant
function. That is, the approximating function will have the form F (x) = A. To ensure that F (x) is a good
approximation for x close to x0, we chose the constant A so that f(x) and F (x) take exactly the same value
when x = x0.

F (x) = A ⇒ F (x0) = A so f(x0) = F (x0) ⇒ A = f(x0)

Our first, and crudest, approximation rule is

f(x) ≈ f(x0) (1)

Here is a figure showing the graphs of a typical f(x) and approximating function F (x). At x = x0, f(x) and

x0
x

y
y = f(x)

y = F (x) = f(x0)

F (x) take the same value. For x very near x0, the values of f(x) and F (x) remain close together. But the
quality of the approximation deteriorates fairly quickly as x moves away from x0.

Second Approximation – the tangent line, or linear, approximation

We now develop a better approximation by allowing the approximating function to be a linear function
of x and not just a constant function. That is, we allow F (x) to be of the form A +Bx. To ensure that F (x)
is a good approximation for x close to x0, we chose the constants A and B so that f(x0) = F (x0) and
f ′(x0) = F ′(x0). Then f(x) and F (x) will have both the same value and the same slope at x = x0.

F (x) = A+Bx ⇒ F (x0) = A+Bx0 so f(x0) = F (x0) ⇒ A+Bx0 = f(x0)

F ′(x) = B ⇒ F ′(x0) = B so f ′(x0) = F ′(x0) ⇒ B = f ′(x0)

Subbing B = f ′(x0) into A + Bx0 = f(x0) gives A = f(x0) − x0f
′(x0) and consequently F (x) = A + Bx =

f(x0)− x0f
′(x0) + xf ′(x0) = f(x0) + f ′(x0)(x − x0). So, our second approximation is

f(x) ≈ f(x0) + f ′(x0)(x− x0) (2)

Here is a figure showing the graphs of a typical f(x) and approximating function F (x). Observe that the graph
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x0
x

y
y = f(x)

y = F (x) = f(x0) + f ′(x0)(x − x0)

of f(x0) + f ′(x0)(x− x0) remains close to the graph of f(x) for a much larger range of x than did the graph of
f(x0).

Third approximation – the quadratic approximation

We finally develop a still better approximation by allowing the approximating function be to a quadratic
function of x. That is, we allow F (x) to be of the form A + Bx + Cx2. To ensure that F (x) is a good
approximation for x close to x0, we chose the constants A, B and C so that f(x0) = F (x0) and f ′(x0) = F ′(x0)
and f ′′(x0) = F ′′(x0).

F (x) = A+Bx+ Cx2 ⇒ F (x0) = A+Bx0 + Cx2
0 = f(x0)

F ′(x) = B + 2Cx ⇒ F ′(x0) = B + 2Cx0 = f ′(x0)

F ′′(x) = 2C ⇒ F ′′(x0) = 2C = f ′′(x0)

Solve for C first, then B and finally A.

C = 1
2f

′′(x0) ⇒ B = f ′(x0)− 2Cx0 = f ′(x0)− x0f
′′(x0)

⇒ A = f(x0)− x0B − Cx2
0 = f(x0)− x0[f

′(x0)− x0f
′′(x0)]− 1

2f
′′(x0)x

2
0

Then build up F (x).

F (x) = f(x0)− f ′(x0)x0 +
1
2f

′′(x0)x
2
0 (this line is A)

+ f ′(x0)x − f ′′(x0)x0x (this line is Bx)

+ 1
2f

′′(x0)x
2 (this line is Cx2)

= f(x0) + f ′(x0)(x− x0) +
1
2f

′′(x0)(x− x0)
2

Our third approximation is

f(x) ≈ f(x0) + f ′(x0)(x − x0) +
1
2f

′′(x0)(x − x0)
2 (3)

It is called the quadratic approximation. Here is a figure showing the graphs of a typical f(x) and approximating
function F (x). The third approximation looks better than both the first and second.

x0
x

y
y = f(x)
y = F (x) = f(x0) + f ′(x0)(x − x0) +

1
2f

′′(x0)(x − x0)
2
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Still Better Approximations – Taylor Polynomials

We can use the same strategy to generate still better approximations by polynomials of any degree we
like. Let’s approximate by a polynomial of degree n. The algebra will be simpler if we make the approximating
polynomial F (x) of the form

a0 + a1(x− x0) + a2(x− x0)
2 + · · ·+ an(x− x0)

n

Because x0 is itself a constant, this is really just a rewriting of A0 +A1x+A2x
2 + · · ·+Anx

n. For example,

a0 + a1(x− x0) + a2(x− x0)
2 = a0 + a1x− a1x0 + a2x

2 − 2a2xx0 + a2x
2
0

= (a0 − a1x0 + a2x
2
0) + (a1 − 2a2x0)x+ a2x

2

= A0 +A1x+A2x
2

with A0 = a0 − a1x0 + a2x
2
0, A1 = a1 − 2a2x0 and A2 = a2. The advantage of the form a0 + a1(x− x0) + · · · is

that x− x0 is zero when x = x0, so lots of terms in the computation drop out. We determine the coefficients ai
by the requirements that f(x) and its approximator F (x) have the same value and the same first n derivatives
at x = x0.

F (x) = a0 + a1(x− x0) + a2(x− x0)
2 + · · ·+ an(x− x0)

n ⇒ F (x0) = a0 = f(x0)

F ′(x) = a1 + 2a2(x− x0) + 3a3(x− x0)
2 + · · ·+ nan(x− x0)

n−1 ⇒ F ′(x0) = a1 = f ′(x0)

F ′′(x) = 2a2 + 3× 2a3(x− x0) + · · ·+ n(n− 1)an(x − x0)
n−2 ⇒ F ′′(x0) = 2a2 = f ′′(x0)

F (3)(x) = 3× 2a3 + · · ·+ n(n− 1)(n− 2)an(x − x0)
n−2 ⇒ F (3)(x0) = 3× 2a3 = f (3)(x0)

...
...

F (n)(x) = n!an ⇒ F (n)(x0) = n!an = f (n)(x0)

Here n! = n(n− 1)(n− 2) · · · 1 is called n factorial. Hence

a0 = f(x0) a1 = f ′(x0) a2 = 1
2!f

′′(x0) a3 = 1
3!f

(3)(x0) · · · an = 1
n!f

(n)(x0)

and the approximator, which is called the Taylor polynomial of degree n for f(x) at x = x0, is

f(x) ≈ f(x0) + f ′(x0)(x − x0) +
1
2!f

′′(x0)(x− x0)
2 + 1

3!f
(3)(x0)(x− x0)

3 + · · ·+ 1
n!f

(n)(x0)(x − x0)
n (4)

Another Notation

Suppose that we have two variables x and y that are related by y = f(x), for some function x. For
example, x might be the number of cars manufactured per week in some factory and y the cost of manufacturing
those x cars. Let x0 be some fixed value of x and let y0 = f(x0) be the corresponding value of y. Now suppose
that x changes by an amount ∆x, from x0 to x0 +∆x. As x undergoes this change, y changes from y0 = f(x0)
to f(x0 +∆x). The change in y that results from the change ∆x in x is

∆y = f(x0 +∆x)− f(x0)

Substituting x = x0 +∆x into the linear approximation (2) yields the approximation

f(x0 +∆x) ≈ f(x0) + f ′(x0)(x0 +∆x− x0) = f(x0) + f ′(x0)∆x

for f(x0 +∆x) and consequently the approximation

∆y = f(x0 +∆x)− f(x0) ≈ f(x0) + f ′(x0)∆x− f(x0) ⇒ ∆y ≈ f ′(x0)∆x (5)
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for ∆y. In the automobile manufacturing example, when the production level is x0 cars per week, increasing
the production level by ∆x will cost approximately f ′(x0)∆x. The additional cost per additional car, f ′(x0), is
called the “marginal cost” of a car.

If we use the quadratic approximation (3) in place of the linear approximation (2)

f(x0 +∆x) ≈ f(x0) + f ′(x0)∆x+ 1
2f

′′(x0)∆x2

we arrive at the quadratic approximation

∆y = f(x0 +∆x)− f(x0) ≈ f(x0)+ f ′(x0)∆x+ 1
2f

′′(x0)∆x2 − f(x0) ⇒ ∆y ≈ f ′(x0)∆x+ 1
2f

′′(x0)∆x2 (6)

for ∆y.

Example 1

Suppose that you wish to compute, approximately, tan 46◦, but that you can’t just use your calculator.
This will be the case, for example, if the computation is an exercise to help prepare you for designing the software
to be used by the calculator.

In this example, we choose f(x) = tanx, x = 46 π
180 radians and x0 = 45 π

180 = π
4 radians. This is a

good choice for x0 because
• x0 = 45◦ is close to x = 46◦. Generally, the closer x is to x0, the better the quality of our various
approximations

• We know the values of all trig functions at 45◦.
The first step in applying our approximations is to compute f and its first two derivatives at x = x0.

f(x) = tanx ⇒ f(x0) = tan π
4 = 1

f ′(x) = (cosx)−2 ⇒ f ′(x0) =
1

cos2(π/4) = 2

45◦

√
2

1

1
f ′′(x) = −2− sin x

cos3 x ⇒ f ′′(x0) = 2 sin(π/4)
cos3(π/4) = 2 1/

√
2

(1/
√
2)3

= 2 1
1/2 = 4

As x− x0 = 46 π
180 − 45 π

180 = π
180 radians, the three approximations are

f(x) ≈ f(x0) = 1

f(x) ≈ f(x0) + f ′(x0)(x− x0) = 1 + 2 π
180 = 1.034907

f(x) ≈ f(x0) + f ′(x0)(x− x0) +
1
2f

′′(x0)(x− x0)
2 = 1 + 2 π

180 + 1
24

(

π
180

)2
= 1.035516

For comparison purposes, tan 46◦ really is 1.035530 to 6 decimal places.
Recall that all of our derivative formulae for trig functions, were developed under the assumption that

angles were measured in radians. As our approximation formulae used those derivatives, we were obliged to
express x− x0 in radians.

Example 2

Let’s find all Taylor polyomial for sinx and cosx at x0 = 0. To do so we merely need compute all
derivatives of sinx and cosx at x0 = 0. First, compute all derivatives at general x.

f(x) = sinx f ′(x) = cosx f ′′(x) = − sinx f (3)(x) = − cosx f (4)(x) = sinx · · ·
g(x) = cosx g′(x) = − sinx g′′(x) = − cosx g(3)(x) = sinx g(4)(x) = cosx · · ·

The pattern starts over again with the fourth derivative being the same as the original function. Now set
x = x0 = 0.

f(x) = sinx f(0) = 0 f ′(0) = 1 f ′′(0) = 0 f (3)(0) = −1 f (4)(0) = 0 · · ·
g(x) = cosx g(0) = 1 g′(0) = 0 g′′(0) = −1 g(3)(0) = 0 g(4)(0) = 1 · · ·
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For sinx, all even numbered derivatives are zero. The odd numbered derivatives alternate between 1 and −1.
For cosx, all odd numbered derivatives are zero. The even numbered derivatives alternate between 1 and −1.
So, the Taylor polynomials that best approximate sinx and cosx near x = x0 = 0 are

sinx ≈ x− 1
3!x

3 + 1
5!x

5 − · · ·
cosx ≈ 1− 1

2!x
2 + 1

4!x
4 − · · ·

Here are graphs of sinx and its Taylor poynomials (about x0 = 0) up to degree seven.

sinx ≈ x sinx ≈ x− 1
3!x

3

sinx ≈ x− 1
3!x

3 + 1
5!x

5 sinx ≈ x− 1
3!x

3 + 1
5!x

5 − 1
7!x

7

Example 3

Suppose that you are ten meters from a vertical pole. You were contracted
to measure the height of the pole. You can’t take it down or climb it. So you
measure the angle subtended by the top of the pole. You measure θ = 30◦, which

θ

h

10

gives h = 10 tan 30◦ = 10√
3
≈ 5.77m. But there’s a catch. Angles are hard to measure accurately. Your contract

specifies that the height must be measured to within an accuracy of 10 cm. How accurate did your measurement
of θ have to be?

For simplicity, we are going to assume that the pole is perfectly straight and perfectly vertical and that
your distance from the pole was exactly 10 m. Write h = h0 + ∆h, where h is the exact height and h0 = 10√

3

is the computed height. Their difference, ∆h, is the error. Similarly, write θ = θ0 + ∆θ where θ is the exact
angle, θ0 is the measured angle and ∆θ is the error. Then

h0 = 10 tan θ0 h0 +∆h = 10 tan(θ0 +∆θ)

We apply ∆y ≈ f ′(x0)∆x, with y replaced by h and x replaced by θ. That is, we apply ∆h ≈ f ′(θ0)∆θ.

Choosing f(θ) = 10 tan θ and θ0 = 30◦ and subbing in f ′(θ0) = 10 sec2 θ0 = 10 sec2 30◦ = 10
(

2√
3

)2
= 40

3 , we see

that the error in the computed value of h and the error in the measured value of θ are related by

∆h ≈ 40
3 ∆θ

To achieve |∆h| ≤ .1, we better have |∆θ| smaller than .1 3
40 radians or .1 3

40
180
π = .43◦.
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Example 4

The radius of a sphere is measured with a percentage error of at most ε%. Find the approximate percentage
error in the surface area and volume of the sphere.

Solution. Suppose that the exact radius is r0 and that the measured radius is r0 + ∆r. Then the absolute

error in the measurement is ∆r and the percentage error is 100 |∆r|
r0

. We are told that 100 |∆r|
r0

≤ ε. The surface

area of a sphere of radius r is A(r) = 4πr2. The error in the surface area computed with the measured radius is

∆A = A(r0 +∆r) −A(r0) ≈ A′(r0)∆r

The corresponding percentage error is

100 |∆A|
A(r0)

≈ 100 |A′(r0)∆r|
A(r0)

= 100 8πr0|∆r|
4πr2

0

= 2× 100 |∆r|
r0

≤ 2ε

The volume of a sphere of radius r is V (r) = 4
3πr

3. The error in the volume computed with the measured
radius is

∆V = V (r0 +∆r) − V (r0) ≈ V ′(r0)∆r

The corresponding percentage error is

100 |∆V |
V (r0)

≈ 100 |V ′(r0)∆r|
V (r0)

= 100
4πr20|∆r|
4πr3

0
/3

= 3× 100 |∆r|
r0

≤ 3ε

We have just computed an approximation to ∆V . In this problem, we can compute the exact error

V (r0 +∆r)− V (r0) =
4
3π(r0 +∆r)3 − 4

3πr
3
0

Applying (a+ b)3 = a3 + 3a2b+ 3ab2 + b3 with a = r0 and b = ∆r, gives

V (r0 +∆r) − V (r0) =
4
3π[r

3
0 + 3r20∆r + 3r0 ∆r2 +∆r3 − r30 ]

= 4
3π[3r

2
0∆r + 3r0 ∆r2 +∆r3]

The linear approximation, ∆V ≈ 4πr20 × ∆r, is recovered by retaining only the first of the three terms in
the square brackets. Thus the difference between the exact error and the linear approximation to the error is
obtained by retaining only the last two terms in the square brackets. This has magnitude

4
3π

∣

∣3r0 ∆r2 +∆r3
∣

∣ = 4
3π

∣

∣3r0 +∆r
∣

∣∆r2

or in percentage terms

100
1

4
3πr

3
0

4
3π

∣

∣3r0 ∆r2 +∆r3
∣

∣ = 100
∣

∣3∆r2

r2
0

+ ∆r3

r3
0

∣

∣ =
(

100 3∆r
r0

)(

∆r
r0

)∣

∣1 + ∆r
3r0

∣

∣ ≤ 3ε
(

ε
100

)(

1 + ε
300

)

Thus the difference between the exact error and the linear approximation is roughly a factor of ε
100 smaller than

the linear approximation 3ε.

Example 5

If an aircraft crosses the Atlantic ocean at a speed of u mph, the flight costs the company

C(u) = 100 + u
3 + 240,000

u

dollars per passenger. When there is no wind, the aircraft flies at an airspeed of 550mph. Find the approximate
savings, per passenger, when there is a 35 mph tail wind. Estimate the cost when there is a 50 mph head wind.

Solution. Let u0 = 550. When the aircraft flies at speed u0, the cost per passenger is C(u0). By (5), a change
of ∆u in the airspeed results in an change of

∆C ≈ C′(u0)∆u =
[

1
3 − 240,000

u2
0

]

∆u =
[

1
3 − 240,000

5502

]

∆u ≈ −.460∆u
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in the cost per passenger. With the tail wind ∆u = 35 and the resulting ∆C ≈ −.460× 35 = −16.10, so there

is a savings of $16.10 . With the head wind ∆u = −50 and the resulting ∆C ≈ −.4601× (−50) = 23.01, so

there is an additional cost of $23.00 .

Example 6

To compute the height h of a lamp post, the length a of the shadow of a six–foot pole is measured. The pole is
20 ft from the lamp post. If the length of the shadow was measured to be 15 ft, with an error of at most one
inch, find the height of the lamp post and estimate the relative error in the height.

h

a20

6

Solution. By similar triangles,

a

6
=

20 + a

h
⇒ h = (20 + a)

6

a
=

120

a
+ 6

The length of the shadow was measured to be a0 = 15 ft. The corresponding height of the lamp post is
h0 = 120

a0
+6 = 120

15 +6 = 14 ft . If the error in the measurement of the length of the shadow was ∆a, then the

exact shadow length was a = a0 +∆a and the exact lamp post height is h = f(a0 +∆a), where f(a) = 120
a +6.

The error in the computed lamp post height is ∆h = h− h0 = f(a0 +∆a)− f(a0). By (5)

∆h ≈ f ′(a0)∆a = − 120
a2
0

∆a = − 120
152∆a

We are told that |∆a| ≤ 1
12 . Consequently |∆h| ≤ 120

152
1
12 = 10

225 (approximately). The relative error is then

|∆h|
h0

≤ 10
225×14 ≈ 0.003 or 0.3%

The Error in the Approximations

Any time you make an approximation, it is desirable to have some idea of the size of the error you
introduced. We will now develop a formula for the error introduced by the approximation f(x) ≈ f(x0). This
formula can be used to get an upper bound on the size of the error, even when you cannot determine f(x)
exactly.

By simple algebra

f(x) = f(x0) +
f(x)− f(x0)

x− x0
(x− x0) (7)

The coefficient f(x)−f(x0)
x−x0

of (x − x0) is the average slope of f(t) as t moves from t = x0 to t = x. In the
figure below, it is the slope of the secant joining the points (x0, f(x0)) and (x, f(x)). As t moves x0 to x,

t

y

x0

(x0, f(x0))

z

(x, f(x))

x

y = f(t)

the instantaneous slope f ′(t) keeps changing. Sometimes it is larger than the average slope f(x)−f(x0)
x−x0

and
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sometimes it is smaller than the average slope. But, by the Mean–Value Theorem, there must be some number

z between x0 and x for which f ′(z) = f(x)−f(x0)
x−x0

. Subbing this into formula (7)

f(x) = f(x0) + f ′(z)(x− x0) for some z between x0 and x (8)

Thus the error in the approximation f(x) ≈ f(x0) is exactly f ′(z)(x− x0) for some z between x0 and x. There
are formulae similar to (8), that can be used to bound the error in our other approximations. One is

f(x) = f(x0) + f ′(x0)(x − x0) +
1
2f

′′(z)(x− x0)
2 for some z between x0 and x

It implies that the error in the approximation f(x) ≈ f(x0)+f ′(x0)(x−x0) is exactly
1
2f

′′(z)(x−x0)
2 for some

z between x0 and x. In general

f(x) =f(x0) + f ′(x0)(x − x0) + · · ·+ 1
n!f

(n)(x0)(x− x0)
n

+ 1
(n+1)!f

(n+1)(z)(x− x0)
n+1 for some z between x0 and x

That is, the error introduced when f(x) is approximated by its Taylor polynomial of degree n, is precisely the
last term of the Taylor polynomial of degree n + 1, but with the derivative evaluated at some point between
x0 and x, rather than exactly at x0. These error formulae are proven in a supplement (which you are not
responsible for) at the end of these notes.

Example 7

Suppose we wish to approximate sin 46◦ using Taylor polynomials about x0 = 45◦. Then, we would
define

f(x) = sinx x0 = 45◦ = 45 π
180 radians x = 46◦ = 46 π

180 radians x− x0 = π
180 radians

The first few derivatives of f at x0 are

f(x) = sinx f(x0) =
1√
2

f ′(x) = cosx f ′(x0) =
1√
2

f ′′(x) = − sinx f ′′(x0) = − 1√
2

f (3)(x) = − cosx

The constant, linear and quadratic approximations for sin 46◦

sin 46◦ ≈ f(x0) = 1√
2

= 0.70710678

sin 46◦ ≈ f(x0) + f ′(x0)(x − x0) = 1√
2
+ 1√

2

(

π
180

)

= 0.71944812

sin 46◦ ≈ f(x0) + f ′(x0)(x − x0) +
1
2f

′′(x0)(x − x0)
2 = 1√

2
+ 1√

2

(

π
180

)

− 1√
2

(

π
180

)2
= 0.71934042

The corresonding errors are

error in 0.70710678 = f ′(z)(x− x0) = cos z
(

π
180

)

error in 0.71944812 = 1
2f

′′(z)(x− x0)
2 = − 1

2 sin z
(

π
180

)2

error in 0.71923272 = 1
3!f

′(z)(x− x0)
3 = − 1

3! cos z
(

π
180

)3

In each of these three cases z must lie somewhere between 45◦ and 46◦. No matter what z is, we know that
| sin z| ≤ 1 and cos z| ≤ 1. Hence

∣

∣error in 0.70710678
∣

∣ ≤
(

π
180

)

< 0.018
∣

∣error in 0.71944812
∣

∣ ≤ 1
2

(

π
180

)2
< 0.00015

∣

∣error in 0.71934042
∣

∣ ≤ 1
3!

(

π
180

)3
< 0.0000009
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Example 2 Revisited

In the second example (measuring the height of the pole), we used the linear approximation

f(θ0 +∆θ) ≈ f(θ0) + f ′(θ0)∆θ (9)

with f(θ) = 10 tan θ and θ0 = 30 π
180 to get

∆h = f(θ0 +∆θ)− f(θ0) ≈ f ′(θ0)∆θ ⇒ ∆θ ≈ ∆h

f ′(θ0)

While this procedure is fairly reliable, it did involve an approximation. So that you could not 100% guarantee
to your client’s lawyer that an accuracy of 10 cm was achieved. If we use the exact formula (8), with the
replacements x → θ0 +∆θ, x0 → θ0, z → φ,

f(θ0 +∆θ) = f(θ0) + f ′(φ)∆θ for some φ between θ0 and θ0 +∆θ

in place of the approximate formula (2), this legality is taken care of.

∆h = f(θ0 +∆θ)− f(θ0) = f ′(φ)∆θ ⇒ ∆θ =
∆h

f ′(φ)
for some φ between θ0 and θ0 +∆θ

Of course we do not know exactly what φ is. But suppose that we know that the angle was somewhere between
25◦ and 35◦. In other words suppose that, even though we don’t know precisely what our measurement error
was, it was certainly no more than 5◦. Then f ′(φ) = 10 sec2(φ) must be smaller than 10 sec2 35◦ < 14.91, which
means that ∆h

f ′(φ) must be at least .1
14.91 radians or .1

14.91
180
π = .38◦. A measurement error of 0.38◦ is certainly

acceptable.

Supplement – Derivation of the Error Formulae

Define
En(x) = f(x)− f(x0)− f ′(x0)(x − x0)− · · · − 1

n!f
(n)(x0)(x − x0)

n

This is the error introduced when one approximates f(x) by f(x0)+ f ′(x0)(x−x0)+ · · ·+ 1
n!f

(n)(x0)(x− x0)
n.

We shall now prove that
En(x) =

1
(n+1)!f

(n+1)(z)(x− x0)
n+1 (10n)

for some z between x0 and x. This proof is not part of the official course. In fact, we have already used
the Mean–Value Theorem to prove that E0(x) = f ′(z)(x − x0), for some z between x0 and x. This was the
content of (8). To deal with n ≥ 1, we need the following small generalization of the Mean–Value Theorem.

Theorem (Generalized Mean–Value Theorem) Let the functions F (x) and G(x) both be defined and

continuous on a ≤ x ≤ b and both be differentiable on a < x < b. Furthermore, suppose that G′(x) 6= 0 for all

a < x < b. Then, there is a number c obeying a < c < b such that

F (b)−F (a)
G(b)−G(a) =

F ′(c)
G′(c)

Proof: Define
h(x) =

[

F (b)− F (a)
][

G(x) −G(a)
]

−
[

F (x) − F (a)
][

G(b)−G(a)
]

Observe that h(a) = h(b) = 0. So, by the Mean–Value Theorem, there is a number c obeying a < c < b such
that

0 = h′(c) =
[

F (b)− F (a)
]

G′(c)− F ′(c)
[

G(b)−G(a)
]

As G(a) 6= G(b) (otherwise the Mean–Value Theorem would imply the existence of an a < x < b obeying
G′(x) = 0), we may divide by G′(c)

[

G(b)−G(a)
]

which gives the desired result.
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To prove (101), that is (10n) for n = 1, simply apply the Generalized Mean–Value Theorem with
F (x) = f(x)− f(x0)− f ′(x0)(x− x0), G(x) = (x− x0)

2, a = x0 and b = x. Then F (a) = G(a) = 0, so that

F (b)
G(b) =

F ′(c)
G′(c) ⇒ f(x)−f(x0)−f ′(x0)(x−x0)

(x−x0)2
= f ′(c)−f ′(x0)

2(c−x0)

for some c between x0 and x. By the Mean–Value Theorem (the standard one, but with f(x) replaced by f ′(x)),
f ′(c)−f ′(x0)

c−x0
= f ′′(z), for some z between x0 and c (which forces z to also be between x0 and x). Hence

f(x)−f(x0)−f ′(x0)(x−x0)
(x−x0)2

= 1
2f

′′(z)

which is exactly (101).
At this stage, we know that (10n) applies to all (sufficiently differentiable) functions for n = 0 and

n = 1. To prove it for general n, we proceed by induction. That is, we assume that we already know that (10n)
applies to n = k − 1 for some k (as is the case for k = 1, 2) and that we wish to prove that it also applies to
n = k. We apply the Generalized Mean–Value Theorem with F (x) = Ek(x), G(x) = (x − x0)

k+1, a = x0 and
b = x. Then F (a) = G(a) = 0, so that

F (b)
G(b) =

F ′(c)
G′(c) ⇒ Ek(x)

(x−x0)k+1 =
E′

k
(c)

(k+1)(c−x0)k

But

E′
k(c) =

d
dx

[

f(x)− f(x0)− f ′(x0)− · · · − 1
k!f

(k)(x0)(x− x0)
k
]

x=c

=
[

f ′(x) − f ′(x0)− · · · − 1
(k−1)!f

(k)(x0)(x − x0)
k−1

]

x=c

= f ′(c)− f ′(x0)− · · · − 1
(k−1)!f

(k)(x0)(c− x0)
k−1

The last expression is exactly the definition of Ek−1(c), but for the function f ′(x), instead of the function f(x).
But we already know that (10k−1) is true, so we already know that the last expression equals

1
(k−1+1)!

(

f ′)(k−1+1)
(z)(c− x0)

k−1+1 = 1
k!f

(k+1)(z)(c− x0)
k

for some z between x0 and c. Subbing this in

Ek(x)
(x−x0)k+1 =

E′

k
(c)

(k+1)(c−x0)k
= 1

(k+1)!f
(k+1)(z)

which is exactly (10k). Repeating this for k = 2, 3, 4, · · · gives (10k) for all k.
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