Complex Numbers and Exponentials

Definition and Basic Operations

A complex number is nothing more than a point in the $x y$-plane. The sum and product of two complex numbers $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is defined by

$$
\begin{aligned}
\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right) & =\left(x_{1}+x_{2}, y_{1}+y_{2}\right) \\
\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right) & =\left(x_{1} x_{2}-y_{1} y_{2}, x_{1} y_{2}+x_{2} y_{1}\right)
\end{aligned}
$$

respectively. It is conventional to use the notation $x+i y$ (or in electrical engineering country $x+j y$) to stand for the complex number (x, y). In other words, it is conventional to write x in place of $(x, 0)$ and i in place of $(0,1)$. In this notation, the sum and product of two complex numbers $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$ is given by

$$
\begin{aligned}
z_{1}+z_{2} & =\left(x_{1}+x_{2}\right)+i\left(y_{1}+y_{2}\right) \\
z_{1} z_{2} & =x_{1} x_{2}-y_{1} y_{2}+i\left(x_{1} y_{2}+x_{2} y_{1}\right)
\end{aligned}
$$

The complex number i has the special property

$$
i^{2}=(0+1 i)(0+1 i)=(0 \times 0-1 \times 1)+i(0 \times 1+1 \times 0)=-1
$$

For example, if $z=1+2 i$ and $w=3+4 i$, then

$$
\begin{aligned}
z+w & =(1+2 i)+(3+4 i)
\end{aligned}=4+6 i, ~=(1+2 i)(3+4 i) \quad=3+4 i+6 i+8 i^{2}=3+4 i+6 i-8=-5+10 i
$$

Addition and multiplication of complex numbers obey the familiar algebraic rules

$$
\begin{array}{rlrl}
z_{1}+z_{2} & =z_{2}+z_{1} & z_{1} z_{2} & =z_{2} z_{1} \\
z_{1}+\left(z_{2}+z_{3}\right) & =\left(z_{1}+z_{2}\right)+z_{3} & z_{1}\left(z_{2} z_{3}\right) & =\left(z_{1} z_{2}\right) z_{3} \\
0+z_{1} & =z_{1} & 1 z_{1} & =z_{1} \\
z_{1}\left(z_{2}+z_{3}\right) & =z_{1} z_{2}+z_{1} z_{3} & \left(z_{1}+z_{2}\right) z_{3} & =z_{1} z_{3}+z_{2} z_{3}
\end{array}
$$

The negative of any complex number $z=x+i y$ is defined by $-z=-x+(-y) i$, and obeys $z+(-z)=0$.

Other Operations

The complex conjugate of z is denoted \bar{z} and is defined to be $\bar{z}=x-i y$. That is, to take the complex conjugate, one replaces every i by $-i$. Note that

$$
z \bar{z}=(x+i y)(x-i y)=x^{2}-i x y+i x y+y^{2}=x^{2}+y^{2}
$$

is always a positive real number. In fact, it is the square of the distance from $x+i y$ (recall that this is the point (x, y) in the $x y$-plane) to 0 (which is the point $(0,0)$). The distance from $z=x+i y$ to 0 is denoted $|z|$ and is called the absolute value, or modulus, of z. It is given by

$$
|z|=\sqrt{x^{2}+y^{2}}=\sqrt{z \bar{z}}
$$

Since $z_{1} z_{2}=\left(x_{1}+i y_{1}\right)\left(x_{2}+i y_{2}\right)=\left(x_{1} x_{2}-y_{1} y_{2}\right)+i\left(x_{1} y_{2}+x_{2} y_{1}\right)$,

$$
\begin{aligned}
\left|z_{1} z_{2}\right| & =\sqrt{\left(x_{1} x_{2}-y_{1} y_{2}\right)^{2}+\left(x_{1} y_{2}+x_{2} y_{1}\right)^{2}} \\
& =\sqrt{x_{1}^{2} x_{2}^{2}-2 x_{1} x_{2} y_{1} y_{2}+y_{1}^{2} y_{2}^{2}+x_{1}^{2} y_{2}^{2}+2 x_{1} y_{2} x_{2} y_{1}+x_{2}^{2} y_{1}^{2}} \\
& =\sqrt{x_{1}^{2} x_{2}^{2}+y_{1}^{2} y_{2}^{2}+x_{1}^{2} y_{2}^{2}+x_{2}^{2} y_{1}^{2}}=\sqrt{\left(x_{1}^{2}+y_{1}^{2}\right)\left(x_{2}^{2}+y_{2}^{2}\right)} \\
& =\left|z_{1}\right|\left|z_{2}\right|
\end{aligned}
$$

for all complex numbers z_{1}, z_{2}.
Since $|z|^{2}=z \bar{z}$, we have $z\left(\frac{\bar{z}}{|z|^{2}}\right)=1$ for all complex numbers $z \neq 0$. This says that the multiplicative inverse, denoted z^{-1} or $\frac{1}{z}$, of any nonzero complex number $z=x+i y$ is

$$
z^{-1}=\frac{\bar{z}}{|z|^{2}}=\frac{x-i y}{x^{2}+y^{2}}=\frac{x}{x^{2}+y^{2}}-\frac{y}{x^{2}+y^{2}} i
$$

It is easy to divide a complex number by a real number. For example

$$
\frac{11+2 i}{25}=\frac{11}{25}+\frac{2}{25} i
$$

In general, there is a trick for rewriting any ratio of complex numbers as a ratio with a real denominator. For example, suppose that we want to find $\frac{1+2 i}{3+4 i}$. The trick is to multiply by $1=\frac{3-4 i}{3-4 i}$. The number $3-4 i$ is the complex conjugate of $3+4 i$. Since $(3+4 i)(3-4 i)=9-12 i+12 i+16=25$

$$
\frac{1+2 i}{3+4 i}=\frac{1+2 i}{3+4 i} \frac{3-4 i}{3-4 i}=\frac{(1+2 i)(3-4 i)}{25}=\frac{11+2 i}{25}=\frac{11}{25}+\frac{2}{25} i
$$

The notations $\operatorname{Re} z$ and $\operatorname{Im} z$ stand for the real and imaginary parts of the complex number z, respectively. If $z=x+i y$ (with x and y real) they are defined by

$$
\operatorname{Re} z=x \quad \operatorname{Im} z=y
$$

Note that both $\operatorname{Re} z$ and $\operatorname{Im} z$ are real numbers. Just subbing in $\bar{z}=x-i y$ gives

$$
\operatorname{Re} z=\frac{1}{2}(z+\bar{z}) \quad \operatorname{Im} z=\frac{1}{2 i}(z-\bar{z})
$$

The Complex Exponential

Definition and Basic Properties. For any complex number $z=x+i y$ the exponential e^{z}, is defined by

$$
e^{x+i y}=e^{x} \cos y+i e^{x} \sin y
$$

In particular, $e^{i y}=\cos y+i \sin y$. This definition is not as mysterious as it looks. We could also define $e^{i y}$ by the subbing x by $i y$ in the Taylor series expansion $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$.

$$
e^{i y}=1+i y+\frac{(i y)^{2}}{2!}+\frac{(i y)^{3}}{3!}+\frac{(i y)^{4}}{4!}+\frac{(i y)^{5}}{5!}+\frac{(i y)^{6}}{6!}+\cdots
$$

The even terms in this expansion are

$$
1+\frac{(i y)^{2}}{2!}+\frac{(i y)^{4}}{4!}+\frac{(i y)^{6}}{6!}+\cdots=1-\frac{y^{2}}{2!}+\frac{y^{4}}{4!}-\frac{y^{6}}{6!}+\cdots=\cos y
$$

and the odd terms in this expansion are

$$
i y+\frac{(i y)^{3}}{3!}+\frac{(i y)^{5}}{5!}+\cdots=i\left(y-\frac{y^{3}}{3!}+\frac{y^{5}}{5!}+\cdots\right)=i \sin y
$$

For any two complex numbers z_{1} and z_{2}

$$
\begin{aligned}
e^{z_{1}} e^{z_{2}} & =e^{x_{1}}\left(\cos y_{1}+i \sin y_{1}\right) e^{x_{2}}\left(\cos y_{2}+i \sin y_{2}\right) \\
& =e^{x_{1}+x_{2}}\left(\cos y_{1}+i \sin y_{1}\right)\left(\cos y_{2}+i \sin y_{2}\right) \\
& =e^{x_{1}+x_{2}}\left\{\left(\cos y_{1} \cos y_{2}-\sin y_{1} \sin y_{2}\right)+i\left(\cos y_{1} \sin y_{2}+\cos y_{2} \sin y_{1}\right)\right\} \\
& =e^{x_{1}+x_{2}}\left\{\cos \left(y_{1}+y_{2}\right)+i \sin \left(y_{1}+y_{2}\right)\right\} \\
& =e^{\left(x_{1}+x_{2}\right)+i\left(y_{1}+y_{2}\right)} \\
& =e^{z_{1}+z_{2}}
\end{aligned}
$$

so that the familiar multiplication formula also applies to complex exponentials. For any complex number $c=\alpha+i \beta$ and real number t

$$
e^{c t}=e^{\alpha t+i \beta t}=e^{\alpha t}[\cos (\beta t)+i \sin (\beta t)]
$$

so that the derivative with respect to t

$$
\begin{aligned}
\frac{d}{d t} e^{c t} & =\alpha e^{\alpha t}[\cos (\beta t)+i \sin (\beta t)]+e^{\alpha t}[-\beta \sin (\beta t)+i \beta \cos (\beta t)] \\
& =(\alpha+i \beta) e^{\alpha t}[\cos (\beta t)+i \sin (\beta t)] \\
& =c e^{c t}
\end{aligned}
$$

is also the familiar one.

Relationship with \sin and \cos. When θ is a real number

$$
\begin{aligned}
e^{i \theta} & =\cos \theta+i \sin \theta \\
e^{-i \theta} & =\cos \theta-i \sin \theta=\overline{e^{i \theta}}
\end{aligned}
$$

are complex numbers of modulus one. Solving for $\cos \theta$ and $\sin \theta$ (by adding and subtracting the two equations)

$$
\begin{aligned}
\cos \theta & =\frac{1}{2}\left(e^{i \theta}+e^{-i \theta}\right)=\operatorname{Re} e^{i \theta} \\
\sin \theta & =\frac{1}{2 i}\left(e^{i \theta}-e^{-i \theta}\right)=\operatorname{Im} e^{i \theta}
\end{aligned}
$$

These formulae make it easy derive trig identities. For example

$$
\begin{aligned}
\cos \theta \cos \phi & =\frac{1}{4}\left(e^{i \theta}+e^{-i \theta}\right)\left(e^{i \phi}+e^{-i \phi}\right) \\
& =\frac{1}{4}\left(e^{i(\theta+\phi)}+e^{i(\theta-\phi)}+e^{i(-\theta+\phi)}+e^{-i(\theta+\phi)}\right) \\
& =\frac{1}{4}\left(e^{i(\theta+\phi)}+e^{-i(\theta+\phi)}+e^{i(\theta-\phi)}+e^{i(-\theta+\phi)}\right) \\
& =\frac{1}{2}(\cos (\theta+\phi)+\cos (\theta-\phi))
\end{aligned}
$$

and, using $(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$,

$$
\begin{aligned}
\sin ^{3} \theta & =-\frac{1}{8 i}\left(e^{i \theta}-e^{-i \theta}\right)^{3} \\
& =-\frac{1}{8 i}\left(e^{i 3 \theta}-3 e^{i \theta}+3 e^{-i \theta}-e^{-i 3 \theta}\right) \\
& =\frac{3}{4} \frac{1}{2 i}\left(e^{i \theta}-e^{-i \theta}\right)-\frac{1}{4} \frac{1}{2 i}\left(e^{i 3 \theta}-e^{-i 3 \theta}\right) \\
& =\frac{3}{4} \sin \theta-\frac{1}{4} \sin (3 \theta)
\end{aligned}
$$

Polar Coordinates. Let $z=x+i y$ be any complex number. Writing (x, y) in polar coordinates in the usual way gives $x=r \cos \theta, y=r \sin \theta$ and

$$
x+i y=r \cos \theta+i r \sin \theta=r e^{i \theta}
$$

In particular

The polar coordinate $\theta=\tan ^{-1} \frac{y}{x}$ associated with the complex number $z=x+i y$ is also called the argument of z.

The polar coordinate representation makes it easy to find square roots, third roots and so on. Fix any positive integer n. The $n^{\text {th }}$ roots of unity are, by definition, all solutions z of

$$
z^{n}=1
$$

Writing $z=r e^{i \theta}$

$$
r^{n} e^{n \theta i}=1 e^{0 i}
$$

The polar coordinates (r, θ) and $\left(r^{\prime}, \theta^{\prime}\right)$ represent the same point in the $x y$-plane if and only if $r=r^{\prime}$ and $\theta=\theta^{\prime}+2 k \pi$ for some integer k. So $z^{n}=1$ if and only if $r^{n}=1$, i.e. $r=1$, and $n \theta=2 k \pi$ for some integer k. The $n^{\text {th }}$ roots of unity are all complex numbers $e^{2 \pi i \frac{k}{n}}$ with k integer. There are precisely n distinct $n^{\text {th }}$ roots of unity because $e^{2 \pi i \frac{k}{n}}=e^{2 \pi i \frac{k^{\prime}}{n}}$ if and only if $2 \pi \frac{k}{n}-2 \pi i \frac{k^{\prime}}{n}=2 \pi \frac{k-k^{\prime}}{n}$ is an integer multiple of 2π. That is, if and only if $k-k^{\prime}$ is an integer multiple of n. The are n distinct nth roots of unity are
$1, e^{2 \pi i \frac{1}{n}}, e^{2 \pi i \frac{2}{n}}, e^{2 \pi i \frac{3}{n}}, \cdots, e^{2 \pi i \frac{n-1}{n}}$

Exploiting Complex Exponentials in Calculus Computations

Example 1

$$
\begin{aligned}
\int e^{x} \cos x d x & =\frac{1}{2} \int e^{x}\left[e^{i x}+e^{-i x}\right] d x=\frac{1}{2} \int\left[e^{(1+i) x}+e^{(1-i) x}\right] d x \\
& =\frac{1}{2}\left[\frac{1}{1+i} e^{(1+i) x}+\frac{1}{1-i} e^{(1-i) x}\right]+C
\end{aligned}
$$

This form of the indefinite integral looks a little wierd because of the i 's. But it is correct and it is purely real, despite the i 's, because $\frac{1}{1-i} e^{(1-i) x}$ is the complex conjugate of $\frac{1}{1+i} e^{(1+i) x}$. We can convert the indefinite integral into a more familar form just by subbing back in $e^{ \pm i x}=\cos x \pm i \sin x, \frac{1}{1+i}=\frac{1-i}{(1+i)(1-i)}=\frac{1-i}{2}$ and $\frac{1}{1-i}=\overline{\frac{1}{1+i}}=\frac{1+i}{2}$.

$$
\begin{aligned}
\int e^{x} \cos x d x & =\frac{1}{2} e^{x}\left[\frac{1}{1+i} e^{i x}+\frac{1}{1-i} e^{-i x}\right]+C \\
& =\frac{1}{2} e^{x}\left[\frac{1-i}{2}(\cos x+i \sin x)+\frac{1+i}{2}(\cos x-i \sin x)\right]+C \\
& =\frac{1}{2} e^{x} \cos x+\frac{1}{2} e^{x} \sin x+C
\end{aligned}
$$

Example 2 Using $(a+b)^{4}=a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4}$,

$$
\begin{aligned}
\int \cos ^{4} x d x & =\frac{1}{2^{4}} \int\left[e^{i x}+e^{-i x}\right]^{4} d x=\frac{1}{2^{4}} \int\left[e^{4 i x}+4 e^{2 i x}+6+4 e^{-2 i x}+e^{-4 i x}\right] d x \\
& =\frac{1}{2^{4}}\left[\frac{1}{4 i} e^{4 i x}+\frac{4}{2 i} e^{2 i x}+6 x+\frac{4}{-2 i} e^{-2 i x}+\frac{1}{-4 i} e^{-4 i x}\right]+C \\
& =\frac{1}{2^{4}}\left[\frac{1}{2} \frac{1}{2 i}\left(e^{4 i x}-e^{-4 i x}\right)+\frac{4}{2 i}\left(e^{2 i x}-e^{-2 i x}\right)+6 x\right]+C \\
& =\frac{1}{2^{4}}\left[\frac{1}{2} \sin 4 x+4 \sin 2 x+6 x\right]+C \\
& =\frac{1}{32} \sin 4 x+\frac{1}{4} \sin 2 x+\frac{3}{8} x+C
\end{aligned}
$$

Example 3 We shall now guess a solution to the differential equation

$$
\begin{equation*}
y^{\prime \prime}+2 y^{\prime}+3 y=\cos t \tag{1}
\end{equation*}
$$

Equations like this arise, for example, in the study of the RLC circuit. We shall simplify the computation by exploiting that $\cos t=\operatorname{Re} e^{i t}$. First, we shall guess a function $Y(t)$ obeying

$$
\begin{equation*}
Y^{\prime \prime}+2 Y^{\prime}+3 Y=e^{i t} \tag{2}
\end{equation*}
$$

Then, taking complex conjugates,

$$
\begin{equation*}
\bar{Y}^{\prime \prime}+2 \bar{Y}^{\prime}+3 \bar{Y}=e^{-i t} \tag{2}
\end{equation*}
$$

and, adding $\frac{1}{2}(2)$ and $\frac{1}{2}(\overline{2})$ together will give

$$
(\operatorname{Re} Y)^{\prime \prime}+2(\operatorname{Re} Y)^{\prime}+3(\operatorname{Re} Y)=\operatorname{Re} e^{i t}=\cos t
$$

which shows that $\operatorname{Re} Y(t)$ is a solution to (1). Let's try $Y(t)=A e^{i t}$. This is a solution of (2) if and only if

$$
\begin{array}{rlrl}
& & \frac{d^{2}}{d t^{2}}\left(A e^{i t}\right)+2 \frac{d}{d t}\left(A e^{i t}\right)+3 A e^{i t} & =e^{i t} \\
\Longleftrightarrow & (2+2 i) A e^{i t} & =e^{i t} \\
\Longleftrightarrow & A & =\frac{1}{2+2 i}
\end{array}
$$

So we have found a solution to (2) and $\operatorname{Re} \frac{e^{i t}}{2+2 i}$ is a solution to (1). To simplify this, write $2+2 i$ in polar coordinates. So

$$
2+2 i=2 \sqrt{2} e^{i \frac{\pi}{4}} \Rightarrow \frac{e^{i t}}{2+2 i}=\frac{e^{i t}}{2 \sqrt{2} e^{i \frac{\pi}{4}}}=\frac{1}{2 \sqrt{2}} e^{i\left(t-\frac{\pi}{4}\right)} \Rightarrow \operatorname{Re} \frac{e^{i t}}{2+2 i}=\frac{1}{2 \sqrt{2}} \cos \left(t-\frac{\pi}{4}\right)
$$

Example 4 In this example, we shall find $\int \sqrt{x^{2}-1} d x$.
First, here is some motivation for the substitution that I shall use. To integrate $\int \sqrt{1-x^{2}} d x$, we substitute $x=\cos t$, since it is easy to take the square root in $\sqrt{1-x^{2}}=\sqrt{1-\cos ^{2} t}=\sqrt{\sin ^{2} t}$. Now that we know about complex numbers, we are no longer afraid of taking the square root of negative numbers. Consequently, we can still substitute $x=\cos t$ into $\sqrt{x^{2}-1}=\sqrt{\cos ^{2} t-1}=\sqrt{-\sin ^{2} t}=\sqrt{-1} \sqrt{\sin ^{2} t}= \pm i \sin t$.

In any real application, the domain of integration for $\int \sqrt{x^{2}-1} d x$ will only include x 's obeying $x^{2} \geq 1$, so that $\sqrt{x^{2}-1}$ is real. This looks like it causes problems for the substitution $x=\cos t$, because we are used to thinking that cost only takes values between -1 and 1 . But the restriction $-1 \leq \cos t \leq 1$ is only valid when t is real. Allowing t to be complex allows $\cos t$ to take all possible complex values. In fact, I claim that as t runs over all pure imaginary values (that is $t=i y$ with y real), $\cos t$ takes all real values bigger than +1 . To see this, set $z=i t$. Then as t runs over all pure imaginary values, z runs over all pure real values. When $z=0, \cos t=\frac{1}{2}\left(e^{i t}+e^{-i t}\right)=\frac{1}{2}\left(e^{z}+e^{-z}\right)$ takes the value 1. As z increases, $\frac{1}{2}\left(e^{z}+e^{-z}\right)$ increases (because $\frac{d}{d z} \frac{1}{2}\left(e^{z}+e^{-z}\right)=\frac{1}{2}\left(e^{z}-e^{-z}\right)>0$ for $\left.z>0\right)$ and as z approachs infinity, so does $\frac{1}{2}\left(e^{z}+e^{-z}\right)$. Thus as z runs through the real numbers from 0 to infinity, $\frac{1}{2}\left(e^{z}+e^{-z}\right)$ runs through the real numbers from 1 to infinity. The function $\frac{1}{2}\left(e^{z}+e^{-z}\right)$ is called the hyperbolic cosine of z and is denoted $\cosh z$. Similarly, the hyperbolic sine of z is $\sinh z=\frac{1}{2}\left(e^{z}-e^{-z}\right)$. The relationship between hyperbolic and regular sine and cosine is

$$
\cos y=\cosh i y \quad i \sin y=\sinh i y
$$

For every trig identity, there is a corresponding identity for sinh and cosh. Just the signs change. For example $\sin ^{2} x+\cos ^{2} x=1$, but $\cosh ^{2} x-\sinh ^{2} x=1$. The identities are checked by just subbing in $\sinh z=\frac{1}{2}\left(e^{z}-e^{-z}\right)$ and $\cosh z=\frac{1}{2}\left(e^{z}+e^{-z}\right)$. Similarly, the derivative rules for \sinh and \cosh are the same as those for sin and cos, up to signs. For example, while $\frac{d}{d x} \cos x=-\sin x, \frac{d}{d x} \cosh x=\sinh x$.

Now the evaluation of the integral. Suppose that we want $x \geq 1$. Sub in $x=\cosh z=\frac{1}{2}\left(e^{z}+e^{-z}\right)$ with $z \geq 0$. (If we wanted $x \leq-1$, we would sub in $x=-\cosh z$.) I'll write everything out explicitly in terms of exponentials. The formulae would be shorter, if I wrote everything in terms of $\cosh x$ and $\sinh x$.

$$
\begin{aligned}
x & =\frac{1}{2}\left(e^{z}+e^{-z}\right) \\
d x & =\frac{1}{2}\left(e^{z}-e^{-z}\right) d z \\
x^{2}-1 & =\frac{1}{4}\left(e^{z}+e^{-z}\right)^{2}-1=\frac{1}{4}\left(e^{2 z}+2+e^{-2 z}\right)-1=\frac{1}{4}\left(e^{2 z}-2+e^{-2 z}\right)=\frac{1}{4}\left(e^{z}-e^{-z}\right)^{2} \\
\sqrt{x^{2}-1} & =\frac{1}{2}\left(e^{z}-e^{-z}\right) \\
\sqrt{x^{2}-1} d x & =\frac{1}{4}\left(e^{z}-e^{-z}\right)^{2} d z=\frac{1}{4}\left(e^{2 z}-2+e^{-2 z}\right) d z \\
\int \sqrt{x^{2}-1} d x & =\frac{1}{4} \int\left(e^{2 z}-2+e^{-2 z}\right) d z=\frac{1}{4}\left(\frac{1}{2} e^{2 z}-2 z-\frac{1}{2} e^{-2 z}\right)+C
\end{aligned}
$$

Now we have to sub back in what z is in terms of x. That is, we have to solve $x=\frac{1}{2}\left(e^{z}+e^{-z}\right)$ for z as a function of x.

$$
x=\frac{1}{2}\left(e^{z}+e^{-z}\right) \Longleftrightarrow 2 x=e^{z}+e^{-z} \Longleftrightarrow 2 x e^{z}=e^{2 z}+1 \Longleftrightarrow e^{2 z}-2 x e^{z}+1=0
$$

Think of this as the quadratic equation $Q^{2}-2 x Q+1=0$ for $Q=e^{z}$. The quadratic equation $Q^{2}-2 x Q+1=0$ has two solutions: $Q=\frac{1}{2}\left(2 x \pm \sqrt{4 x^{2}-4}\right)=x \pm \sqrt{x^{2}-1}$. Note that if we divide the equation $e^{2 z}-2 x e^{z}+1=0$ by $e^{2 z}$ we get $e^{-2 z}-2 x e^{-z}+1=0$, which is exactly the same quadratic equation for $Q^{\prime}=e^{-z}$ as we had for Q. One of the two solutions $x \pm \sqrt{x^{2}-1}$ is e^{z} and the other is e^{-z}. As we want $z \geq 0$, so that $e^{z} \geq e^{-z}$, we have to choose $e^{z}=x+\sqrt{x^{2}-1}$ and $e^{-z}=x-\sqrt{x^{2}-1}$. As a check, note that

$$
\left(x+\sqrt{x^{2}-1}\right)\left(x-\sqrt{x^{2}-1}\right)=x^{2}-\left(x^{2}-1\right)=1 \quad \Rightarrow \quad \frac{1}{x+\sqrt{x^{2}-1}}=x-\sqrt{x^{2}-1}
$$

Subbing in $e^{z}=x+\sqrt{x^{2}-1}$ and $e^{-z}=x-\sqrt{x^{2}-1}$ and $z=\ln \left(x+\sqrt{x^{2}-1}\right)$,

$$
\begin{aligned}
\int \sqrt{x^{2}-1} d x & =\frac{1}{4}\left[\frac{1}{2} e^{2 z}-2 z-\frac{1}{2} e^{-2 z}\right]+C \\
& =\frac{1}{4}\left[\frac{1}{2}\left(x+\sqrt{x^{2}-1}\right)^{2}-2 \ln \left(x+\sqrt{x^{2}-1}\right)-\frac{1}{2}\left(x-\sqrt{x^{2}-1}\right)^{2}\right]+C \\
& =\frac{1}{2}\left[x \sqrt{x^{2}-1}-\ln \left(x+\sqrt{x^{2}-1}\right)\right]+C
\end{aligned}
$$

As a check, note that

$$
\begin{aligned}
\frac{d}{d x} \frac{1}{2}\left[x \sqrt{x^{2}-1}-\ln \left(x+\sqrt{x^{2}-1}\right)\right] & =\frac{1}{2}\left[\sqrt{x^{2}-1}+x \frac{x}{\sqrt{x^{2}-1}}-\frac{1+x / \sqrt{x^{2}-1}}{x+\sqrt{x^{2}-1}}\right] \\
& =\frac{1}{2}\left[\frac{x^{2}-1}{\sqrt{x^{2}-1}}+\frac{x^{2}}{\sqrt{x^{2}-1}}-\frac{1}{\sqrt{x^{2}-1}} \frac{\sqrt{x^{2}-1}+x}{x+\sqrt{x^{2}-1}}\right] \\
& =\frac{1}{2}\left[\frac{x^{2}-1}{\sqrt{x^{2}-1}}+\frac{x^{2}}{\sqrt{x^{2}-1}}-\frac{1}{\sqrt{x^{2}-1}}\right] \\
& =\frac{1}{2}\left[\frac{2 x^{2}-2}{\sqrt{x^{2}-1}}\right]=\frac{x^{2}-1}{\sqrt{x^{2}-1}}=\sqrt{x^{2}-1}
\end{aligned}
$$

as desired.

Example 5 In this example, we shall find $\int \frac{x+2}{x^{2}+2 x+5} d x$. Using complex numbers, any polynomial can be written as a product of linear factors. This allows us to eliminate quadratic denominators from the partial fractions procedure. This example illustrates how.

We first have to factor the denominator $x^{2}+2 x+5$. We can use the high school formula for the roots of a quadratic equation: $\frac{-2 \pm \sqrt{2^{2}-4 \times 5}}{2}=\frac{-2 \pm \sqrt{4-20}}{2}=-1 \pm \sqrt{-4}=-1 \pm 2 i$. Or we can complete the square

$$
x^{2}+2 x+5=(x+1)^{2}+4=(x+1)^{2}-(2 i)^{2}=[(x+1)-2 i][(x+1)+2 i]=[x+1-2 i][x+1+2 i]
$$

Next we write the integrand in the form

$$
\frac{x+2}{x^{2}+2 x+5}=\frac{x+2}{(x+1-2 i)(x+1+2 i)}=\frac{a}{x+1-2 i}+\frac{b}{x+1+2 i}
$$

with the constants a and b chosen so that

$$
\frac{a}{x+1-2 i}+\frac{b}{x+1+2 i}=\frac{a(x+1+2 i)+b(x+1-2 i)}{(x+1-2 i)(x+1+2 i)}=\frac{x+2}{(x+1-2 i)(x+1+2 i)} \text { i.e. so that } a(x+1+2 i)+b(x+1-2 i)=x+2
$$

This has to be true for all x. We can solve easily for a if we choose $x+1=2 i$ and we can solve easily for b if we choose $x+1=-2 i$:

$$
\begin{array}{llc}
x+1=2 i & \Rightarrow & a(2 i+2 i)+b(2 i-2 i)=2 i+1
\end{array} \quad \Rightarrow \quad 4 i a=1+2 i \quad \Rightarrow \quad a=\frac{1+2 i}{4 i}=\frac{1}{2}-\frac{1}{4} i
$$

since $\frac{1}{i}=-i$. As a check, we observe that, with $a=\frac{1}{2}-\frac{1}{4} i$ and $b=\frac{1}{2}+\frac{1}{4} i$,

$$
\begin{aligned}
a(x+1+2 i)+b(x+1-2 i) & =\left(\frac{1}{2}-\frac{1}{4} i\right)(x+1+2 i)+\left(\frac{1}{2}+\frac{1}{4} i\right)(x+1-2 i) \\
& =(x+1)\left(\frac{1}{2}-\frac{1}{4} i+\frac{1}{2}+\frac{1}{4} i\right)+2 i\left(\frac{1}{2}-\frac{1}{4} i-\frac{1}{2}-\frac{1}{4} i\right) \\
& =x+1+2 i\left(-\frac{1}{2} i\right)=x+2
\end{aligned}
$$

as desired. The integral is now easy,

$$
\begin{aligned}
\int \frac{x+2}{x^{2}+2 x+5} d x & =\int\left[\frac{a}{x+1-2 i}+\frac{b}{x+1+2 i}\right] d x=a \ln (x+1-2 i)+b \ln (x+1+2 i)+C \\
& =\left(\frac{1}{2}-\frac{1}{4} i\right) \ln (x+1-2 i)+\left(\frac{1}{2}+\frac{1}{4} i\right) \ln (x+1+2 i)+C
\end{aligned}
$$

(c) Joel Feldman. 2003. All rights reserved.
though the answer looks a little wierd because of the complex numbers.
One can eliminate the complex numbers by using the fact that

$$
\begin{equation*}
\ln (X \pm i Y)=\ln \sqrt{X^{2}+Y^{2}} \pm i \tan ^{-1} \frac{Y}{X} \tag{L}
\end{equation*}
$$

To derive (L), let $\ln (X \pm i Y)=U \pm i V$, with U and V real. Then U and V are to be determined by $e^{U \pm i V}=X \pm i Y$ or $e^{U}(\cos V \pm i \sin V)=X \pm i Y$ or $e^{U} \cos V=X, e^{U} \sin V=Y$. Dividing the last two equations gives $\tan V=\frac{Y}{X}$ and adding the squares of the last two equations together gives $e^{2 U}=X^{2}+Y^{2}$.

Applying (L) with $X=x+1$ and $Y=2$ gives

$$
\begin{aligned}
\left(\frac{1}{2}-\frac{1}{4} i\right) \ln (x+1-2 i)+\left(\frac{1}{2}+\frac{1}{4} i\right) \ln (x+1+2 i)= & \left(\frac{1}{2}-\frac{1}{4} i\right)\left(\sqrt{x^{2}+2 x+5}-i \tan ^{-1} \frac{2}{x+1}\right) \\
& +\left(\frac{1}{2}+\frac{1}{4} i\right)\left(\sqrt{x^{2}+2 x+5}+i \tan ^{-1} \frac{2}{x+1}\right) \\
= & \sqrt{x^{2}+2 x+5}-\frac{1}{2} \tan ^{-1} \frac{2}{x+1}
\end{aligned}
$$

