
Complex Numbers and Exponentials

Definition and Basic Operations

A complex number is nothing more than a point in the xy–plane. The sum and product of two complex

numbers (x1, y1) and (x2, y2) is defined by

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2)

(x1, y1) (x2, y2) = (x1x2 − y1y2, x1y2 + x2y1)

respectively. It is conventional to use the notation x+ iy (or in electrical engineering country x+ jy) to stand

for the complex number (x, y). In other words, it is conventional to write x in place of (x, 0) and i in place of

(0, 1). In this notation, the sum and product of two complex numbers z1 = x1 + iy1 and z2 = x2 + iy2 is given

by
z1 + z2 = (x1 + x2) + i(y1 + y2)

z1z2 = x1x2 − y1y2 + i(x1y2 + x2y1)

The complex number i has the special property

i2 = (0 + 1i)(0 + 1i) = (0× 0− 1× 1) + i(0× 1 + 1× 0) = −1

For example, if z = 1 + 2i and w = 3 + 4i, then

z + w = (1 + 2i) + (3 + 4i) = 4 + 6i

zw = (1 + 2i)(3 + 4i) = 3 + 4i+ 6i+ 8i2 = 3 + 4i+ 6i− 8 = −5 + 10i

Addition and multiplication of complex numbers obey the familiar algebraic rules

z1 + z2 = z2 + z1 z1z2 = z2z1

z1 + (z2 + z3) = (z1 + z2) + z3 z1(z2z3) = (z1z2)z3

0 + z1 = z1 1z1 = z1

z1(z2 + z3) = z1z2 + z1z3 (z1 + z2)z3 = z1z3 + z2z3

The negative of any complex number z = x+ iy is defined by −z = −x+ (−y)i, and obeys z + (−z) = 0.

Other Operations

The complex conjugate of z is denoted z̄ and is defined to be z̄ = x− iy . That is, to take the complex

conjugate, one replaces every i by −i. Note that

zz̄ = (x+ iy)(x− iy) = x2 − ixy + ixy + y2 = x2 + y2

is always a positive real number. In fact, it is the square of the distance from x+ iy (recall that this is the point

(x, y) in the xy–plane) to 0 (which is the point (0, 0)). The distance from z = x+ iy to 0 is denoted |z| and is

called the absolute value, or modulus, of z . It is given by

|z| =
√

x2 + y2 =
√
zz̄
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Since z1z2 = (x1 + iy1)(x2 + iy2) = (x1x2 − y1y2) + i(x1y2 + x2y1),

|z1z2| =
√

(x1x2 − y1y2)2 + (x1y2 + x2y1)2

=
√

x2
1x

2
2 − 2x1x2y1y2 + y21y

2
2 + x2

1y
2
2 + 2x1y2x2y1 + x2

2y
2
1

=
√

x2
1x

2
2 + y21y

2
2 + x2

1y
2
2 + x2

2y
2
1 =

√

(x2
1 + y21)(x

2
2 + y22)

= |z1||z2|

for all complex numbers z1, z2 .

Since |z|2 = zz̄, we have z
(

z̄
|z|2

)

= 1 for all complex numbers z 6= 0 . This says that the multiplicative

inverse, denoted z−1 or 1
z , of any nonzero complex number z = x+ iy is

z−1 = z̄
|z|2 = x−iy

x2+y2 = x
x2+y2 − y

x2+y2 i

It is easy to divide a complex number by a real number. For example

11+2i
25 = 11

25 + 2
25 i

In general, there is a trick for rewriting any ratio of complex numbers as a ratio with a real denominator. For

example, suppose that we want to find 1+2i
3+4i . The trick is to multiply by 1 = 3−4i

3−4i . The number 3 − 4i is the

complex conjugate of 3 + 4i. Since (3 + 4i)(3− 4i) = 9− 12i+ 12i+ 16 = 25

1+2i
3+4i =

1+2i
3+4i

3−4i
3−4i =

(1+2i)(3−4i)
25 = 11+2i

25 = 11
25 + 2

25 i

The notations Re z and Im z stand for the real and imaginary parts of the complex number z, respec-

tively. If z = x+ iy (with x and y real) they are defined by

Re z = x Im z = y

Note that both Re z and Im z are real numbers. Just subbing in z̄ = x− iy gives

Re z = 1
2 (z + z̄) Im z = 1

2i (z − z̄)

The Complex Exponential

Definition and Basic Properties. For any complex number z = x+ iy the exponential ez , is defined by

ex+iy = ex cos y + iex sin y

In particular, eiy = cos y+ i sin y. This definition is not as mysterious as it looks. We could also define eiy by

the subbing x by iy in the Taylor series expansion ex =
∑∞

n=0
xn

n! .

eiy = 1 + iy + (iy)2

2! + (iy)3

3! + (iy)4

4! + (iy)5

5! + (iy)6

6! + · · ·

The even terms in this expansion are

1 + (iy)2

2! + (iy)4

4! + (iy)6

6! + · · · = 1− y2

2! +
y4

4! −
y6

6! + · · · = cos y
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and the odd terms in this expansion are

iy + (iy)3

3! + (iy)5

5! + · · · = i
(

y − y3

3! +
y5

5! + · · ·
)

= i sin y

For any two complex numbers z1 and z2

ez1ez2 = ex1(cos y1 + i sin y1)e
x2(cos y2 + i sin y2)

= ex1+x2(cos y1 + i sin y1)(cos y2 + i sin y2)

= ex1+x2 {(cos y1 cos y2 − sin y1 sin y2) + i(cos y1 sin y2 + cos y2 sin y1)}
= ex1+x2 {cos(y1 + y2) + i sin(y1 + y2)}
= e(x1+x2)+i(y1+y2)

= ez1+z2

so that the familiar multiplication formula also applies to complex exponentials. For any complex number

c = α+ iβ and real number t

ect = eαt+iβt = eαt[cos(βt) + i sin(βt)]

so that the derivative with respect to t

d
dte

ct = αeαt[cos(βt) + i sin(βt)] + eαt[−β sin(βt) + iβ cos(βt)]

= (α+ iβ)eαt[cos(βt) + i sin(βt)]

= cect

is also the familiar one.

Relationship with sin and cos. When θ is a real number

eiθ = cos θ + i sin θ

e−iθ = cos θ − i sin θ = eiθ

are complex numbers of modulus one. Solving for cos θ and sin θ (by adding and subtracting the two equations)

cos θ = 1
2 (e

iθ + e−iθ) = Re eiθ

sin θ = 1
2i(e

iθ − e−iθ) = Im eiθ

These formulae make it easy derive trig identities. For example

cos θ cosφ = 1
4 (e

iθ + e−iθ)(eiφ + e−iφ)

= 1
4 (e

i(θ+φ) + ei(θ−φ) + ei(−θ+φ) + e−i(θ+φ))

= 1
4 (e

i(θ+φ) + e−i(θ+φ) + ei(θ−φ) + ei(−θ+φ))

= 1
2

(

cos(θ + φ) + cos(θ − φ)
)

and, using (a+ b)3 = a3 + 3a2b + 3ab2 + b3,

sin3 θ = − 1
8i

(

eiθ − e−iθ
)3

= − 1
8i

(

ei3θ − 3eiθ + 3e−iθ − e−i3θ
)

= 3
4

1
2i

(

eiθ − e−iθ
)

− 1
4

1
2i

(

ei3θ − e−i3θ
)

= 3
4 sin θ − 1

4 sin(3θ)
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Polar Coordinates. Let z = x+ iy be any complex number. Writing (x, y) in polar coordinates in the usual

way gives x = r cos θ, y = r sin θ and

x+ iy = r cos θ + ir sin θ = reiθ

y

x

x+ iy = reiθ

θ

r

In particular

y

x

π
2

−π
2

π 1=(1,0)(−1,0)=−1

i=(0,1)

−i=(0,−1)

1 = ei0 = e2πi = e2kπi for k = 0,±1,±2, · · ·
−1 = eiπ = e3πi = e(1+2k)πi for k = 0,±1,±2, · · ·
i = eiπ/2 = e

5

2
πi = e(

1

2
+2k)πi for k = 0,±1,±2, · · ·

−i = e−iπ/2 = e
3

2
πi = e(−

1

2
+2k)πi for k = 0,±1,±2, · · ·

The polar coordinate θ = tan−1 y
x associated with the complex number z = x + iy is also called the argument

of z.

The polar coordinate representation makes it easy to find square roots, third roots and so on. Fix any

positive integer n. The nth roots of unity are, by definition, all solutions z of

zn = 1

Writing z = reiθ

rnenθi = 1e0i

The polar coordinates (r, θ) and (r′, θ′) represent the same point in the xy–plane if and only if r = r′ and

θ = θ′ + 2kπ for some integer k. So zn = 1 if and only if rn = 1, i.e. r = 1, and nθ = 2kπ for some integer k.

The nth roots of unity are all complex numbers e2πi
k

n with k integer. There are precisely n distinct nth roots

of unity because e2πi
k

n = e2πi
k
′

n if and only if 2π k
n − 2πik

′

n = 2π k−k′

n is an integer multiple of 2π. That is, if

and only if k − k′ is an integer multiple of n. The are n distinct nth roots of unity are

1 , e2πi
1

n , e2πi
2

n , e2πi
3

n , · · · , e2πi
n−1

n

y

x
1=e2πi

0

6

e2πi
1

6e2πi
2

6

e2πi
3

6 =−1

e2πi
4

6 e2πi
5

6
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Exploiting Complex Exponentials in Calculus Computations

Example 1
∫

ex cosx dx = 1
2

∫

ex
[

eix + e−ix
]

dx = 1
2

∫

[

e(1+i)x + e(1−i)x
]

dx

= 1
2

[

1
1+ie

(1+i)x + 1
1−ie

(1−i)x
]

+ C

This form of the indefinite integral looks a little wierd because of the i’s. But it is correct and it is purely

real, despite the i’s, because 1
1−ie

(1−i)x is the complex conjugate of 1
1+ie

(1+i)x. We can convert the indefinite

integral into a more familar form just by subbing back in e±ix = cosx ± i sinx, 1
1+i = 1−i

(1+i)(1−i) = 1−i
2 and

1
1−i =

1
1+i =

1+i
2 .

∫

ex cosx dx = 1
2e

x
[

1
1+ie

ix + 1
1−ie

−ix
]

+ C

= 1
2e

x
[

1−i
2 (cos x+ i sinx) + 1+i

2 (cos x− i sinx)
]

+ C

= 1
2e

x cosx+ 1
2e

x sinx+ C

Example 2 Using (a+ b)4 = a4 + 4a3b+ 6a2b2 + 4ab3 + b4,
∫

cos4 x dx = 1
24

∫

[

eix + e−ix
]4

dx = 1
24

∫

[

e4ix + 4e2ix + 6 + 4e−2ix + e−4ix
]

dx

= 1
24

[

1
4ie

4ix + 4
2ie

2ix + 6x+ 4
−2ie

−2ix + 1
−4ie

−4ix
]

+ C

= 1
24

[

1
2

1
2i (e

4ix − e−4ix) + 4
2i (e

2ix − e−2ix) + 6x
]

+ C

= 1
24

[

1
2 sin 4x+ 4 sin 2x+ 6x

]

+ C

= 1
32 sin 4x+ 1

4 sin 2x+ 3
8x+ C

Example 3 We shall now guess a solution to the differential equation

y′′ + 2y′ + 3y = cos t (1)

Equations like this arise, for example, in the study of the RLC circuit. We shall simplify the computation by

exploiting that cos t = Re eit. First, we shall guess a function Y (t) obeying

Y ′′ + 2Y ′ + 3Y = eit (2)

Then, taking complex conjugates,

Ȳ ′′ + 2Ȳ ′ + 3Ȳ = e−it (2̄)

and, adding 1
2 (2) and

1
2 (2̄) together will give

(ReY )′′ + 2(ReY )′ + 3(ReY ) = Re eit = cos t

which shows that ReY (t) is a solution to (1). Let’s try Y (t) = Aeit. This is a solution of (2) if and only if

d2

dt2

(

Aeit
)

+ 2 d
dt

(

Aeit
)

+ 3Aeit = eit

⇐⇒ (2 + 2i)Aeit = eit

⇐⇒ A = 1
2+2i

So we have found a solution to (2) and Re eit

2+2i is a solution to (1). To simplify this, write 2 + 2i in polar

coordinates. So

2 + 2i = 2
√
2ei

π

4 ⇒ eit

2+2i =
eit

2
√
2ei

π

4

= 1
2
√
2
ei(t−

π

4
) ⇒ Re eit

2+2i =
1

2
√
2
cos(t− π

4 )
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Example 4 In this example, we shall find
∫ √

x2 − 1 dx.

First, here is some motivation for the substitution that I shall use. To integrate
∫ √

1− x2 dx, we

substitute x = cos t, since it is easy to take the square root in
√
1− x2 =

√
1− cos2 t =

√
sin2 t. Now that

we know about complex numbers, we are no longer afraid of taking the square root of negative numbers.

Consequently, we can still substitute x = cos t into
√
x2 − 1 =

√
cos2 t− 1 =

√

− sin2 t =
√
−1

√
sin2 t = ±i sin t.

In any real application, the domain of integration for
∫ √

x2 − 1 dx will only include x’s obeying x2 ≥ 1,

so that
√
x2 − 1 is real. This looks like it causes problems for the substitution x = cos t, because we are used

to thinking that cos t only takes values between −1 and 1. But the restriction −1 ≤ cos t ≤ 1 is only valid

when t is real. Allowing t to be complex allows cos t to take all possible complex values. In fact, I claim that

as t runs over all pure imaginary values (that is t = iy with y real), cos t takes all real values bigger than +1.

To see this, set z = it. Then as t runs over all pure imaginary values, z runs over all pure real values. When

z = 0, cos t = 1
2

(

eit + e−it
)

= 1
2

(

ez + e−z
)

takes the value 1. As z increases, 1
2

(

ez + e−z
)

increases (because
d
dz

1
2

(

ez + e−z
)

= 1
2

(

ez − e−z
)

> 0 for z > 0) and as z approachs infinity, so does 1
2

(

ez + e−z
)

. Thus as z runs

through the real numbers from 0 to infinity, 1
2

(

ez + e−z
)

runs through the real numbers from 1 to infinity. The

function 1
2

(

ez + e−z
)

is called the hyperbolic cosine of z and is denoted cosh z. Similarly, the hyperbolic sine of

z is sinh z = 1
2

(

ez − e−z
)

. The relationship between hyperbolic and regular sine and cosine is

cos y = cosh iy i sin y = sinh iy

For every trig identity, there is a corresponding identity for sinh and cosh. Just the signs change. For example

sin2 x+cos2 x = 1, but cosh2 x− sinh2 x = 1. The identities are checked by just subbing in sinh z = 1
2

(

ez − e−z
)

and cosh z = 1
2

(

ez + e−z
)

. Similarly, the derivative rules for sinh and cosh are the same as those for sin and

cos, up to signs. For example, while d
dx cosx = − sinx, d

dx coshx = sinhx.

Now the evaluation of the integral. Suppose that we want x ≥ 1. Sub in x = cosh z = 1
2

(

ez + e−z
)

with z ≥ 0. (If we wanted x ≤ −1, we would sub in x = − cosh z.) I’ll write everything out explicitly in terms

of exponentials. The formulae would be shorter, if I wrote everything in terms of coshx and sinhx.

x = 1
2

(

ez + e−z
)

dx = 1
2

(

ez − e−z
)

dz

x2 − 1 = 1
4

(

ez + e−z
)2 − 1 = 1

4

(

e2z + 2 + e−2z
)

− 1 = 1
4

(

e2z − 2 + e−2z
)

= 1
4

(

ez − e−z
)2

√

x2 − 1 = 1
2

(

ez − e−z
)

√

x2 − 1 dx = 1
4

(

ez − e−z
)2

dz = 1
4

(

e2z − 2 + e−2z
)

dz
∫

√

x2 − 1 dx = 1
4

∫

(

e2z − 2 + e−2z
)

dz = 1
4

(

1
2e

2z − 2z − 1
2e

−2z
)

+ C

Now we have to sub back in what z is in terms of x. That is, we have to solve x = 1
2

(

ez + e−z
)

for z as a

function of x.

x = 1
2

(

ez + e−z
)

⇐⇒ 2x = ez + e−z ⇐⇒ 2xez = e2z + 1 ⇐⇒ e2z − 2xez + 1 = 0

Think of this as the quadratic equation Q2−2xQ+1 = 0 for Q = ez. The quadratic equation Q2−2xQ+1 = 0

has two solutions: Q = 1
2

(

2x±
√
4x2 − 4

)

= x±
√
x2 − 1. Note that if we divide the equation e2z−2xez+1 = 0

by e2z we get e−2z − 2xe−z + 1 = 0, which is exactly the same quadratic equation for Q′ = e−z as we had for

Q. One of the two solutions x ±
√
x2 − 1 is ez and the other is e−z. As we want z ≥ 0, so that ez ≥ e−z, we

have to choose ez = x+
√
x2 − 1 and e−z = x−

√
x2 − 1. As a check, note that

(

x+
√

x2 − 1
)(

x−
√

x2 − 1
)

= x2 − (x2 − 1) = 1 ⇒ 1
x+

√
x2−1

= x−
√

x2 − 1
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Subbing in ez = x+
√
x2 − 1 and e−z = x−

√
x2 − 1 and z = ln

(

x+
√
x2 − 1

)

,

∫

√

x2 − 1 dx = 1
4

[

1
2e

2z − 2z − 1
2e

−2z
]

+ C

= 1
4

[

1
2

(

x+
√

x2 − 1
)2 − 2 ln

(

x+
√

x2 − 1
)

− 1
2

(

x−
√

x2 − 1
)2]

+ C

= 1
2

[

x
√
x2 − 1− ln

(

x+
√
x2 − 1

)]

+ C

As a check, note that

d
dx

1
2

[

x
√

x2 − 1− ln
(

x+
√

x2 − 1
)]

= 1
2

[

√

x2 − 1 + x x√
x2−1

− 1+x/
√
x2−1

x+
√
x2−1

]

= 1
2

[

x2−1√
x2−1

+ x2

√
x2−1

− 1√
x2−1

√
x2−1+x

x+
√
x2−1

]

= 1
2

[

x2−1√
x2−1

+ x2

√
x2−1

− 1√
x2−1

]

= 1
2

[

2x2−2√
x2−1

]

= x2−1√
x2−1

=
√

x2 − 1

as desired.

Example 5 In this example, we shall find
∫

x+2
x2+2x+5 dx. Using complex numbers, any polynomial can be

written as a product of linear factors. This allows us to eliminate quadratic denominators from the partial

fractions procedure. This example illustrates how.

We first have to factor the denominator x2 +2x+5. We can use the high school formula for the roots

of a quadratic equation: −2±
√
22−4×5
2 = −2±

√
4−20

2 = −1±
√
−4 = −1± 2i. Or we can complete the square

x2 + 2x+ 5 = (x+ 1)2 + 4 = (x+ 1)2 − (2i)2 = [(x+ 1)− 2i][(x+ 1) + 2i] = [x+ 1− 2i][x+ 1 + 2i]

Next we write the integrand in the form

x+2
x2+2x+5 = x+2

(x+1−2i)(x+1+2i) =
a

x+1−2i +
b

x+1+2i

with the constants a and b chosen so that

a
x+1−2i +

b
x+1+2i =

a(x+1+2i)+b(x+1−2i)
(x+1−2i)(x+1+2i) = x+2

(x+1−2i)(x+1+2i) i.e. so that a(x+ 1 + 2i) + b(x+ 1− 2i) = x+ 2

This has to be true for all x. We can solve easily for a if we choose x + 1 = 2i and we can solve easily for b if

we choose x+ 1 = −2i:

x+ 1 = 2i ⇒ a(2i+ 2i) + b(2i− 2i) = 2i+ 1 ⇒ 4i a = 1+ 2i ⇒ a = 1+2i
4i = 1

2 − 1
4 i

x+ 1 = −2i ⇒ a(−2i+ 2i) + b(−2i− 2i) = −2i+ 1 ⇒ −4i b = 1− 2i ⇒ b = − 1−2i
4i = 1

2 + 1
4 i

since 1
i = −i. As a check, we observe that, with a = 1

2 − 1
4 i and b = 1

2 + 1
4 i,

a(x+ 1 + 2i) + b(x+ 1− 2i) =
(

1
2 − 1

4 i
)

(x + 1 + 2i) +
(

1
2 + 1

4 i
)

(x+ 1− 2i)

= (x+ 1)
(

1
2 − 1

4 i+
1
2 + 1

4 i
)

+ 2i
(

1
2 − 1

4 i− 1
2 − 1

4 i
)

= x+ 1 + 2i
(

− 1
2 i
)

= x+ 2

as desired. The integral is now easy,

∫

x+2
x2+2x+5 dx =

∫

[

a
x+1−2i +

b
x+1+2i

]

dx = a ln(x+ 1− 2i) + b ln(x + 1 + 2i) + C

=
(

1
2 − 1

4 i
)

ln(x+ 1− 2i) +
(

1
2 + 1

4 i
)

ln(x+ 1 + 2i) + C
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though the answer looks a little wierd because of the complex numbers.

One can eliminate the complex numbers by using the fact that

ln(X ± iY ) = ln
√

X2 + Y 2 ± i tan−1 Y
X (L)

To derive (L), let ln(X ± iY ) = U ± iV , with U and V real. Then U and V are to be determined by

eU±iV = X ± iY or eU
(

cosV ± i sinV ) = X ± iY or eU cosV = X , eU sinV = Y . Dividing the last two

equations gives tanV = Y
X and adding the squares of the last two equations together gives e2U = X2 + Y 2.

Applying (L) with X = x+ 1 and Y = 2 gives

(

1
2 − 1

4 i
)

ln(x+ 1− 2i) +
(

1
2 + 1

4 i
)

ln(x+ 1 + 2i) =
(

1
2 − 1

4 i
)(

√

x2 + 2x+ 5− i tan−1 2
x+1

)

+
(

1
2 + 1

4 i
)(

√

x2 + 2x+ 5 + i tan−1 2
x+1

)

=
√

x2 + 2x+ 5− 1
2 tan

−1 2
x+1

c© Joel Feldman. 2003. All rights reserved. 8


