A Careful Area Computation

We are going to carefully compute the exact area of the region 0 < y < e* < 1,
0 < x < 1. There will be no uncontrolled approximations.
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Because derivative met = e’

is always positive, the function e” increases as =z
increases. Consequently, the smallest and largest values of e* on the interval a < z < b are
e® and e®, respectively. In particular, for 0 < z < + &> €” takes values only between e? and
el/N . As a result, the set

(z,y) | 0<z< &, 0<y<e®
N

(the lighter rectangle in the figure on the

contains the rectangle of 0 < z < %, 0<y<el
0<x< %, 0<y< el/N (the largest rectangle

left below) and is contained in the rectangle
in the figure on the left below). Hence
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Similarly, as in the figure on the right above,

%el/NgArea{ (z,y) ‘ % <z< %, Ogygex} < %eQ/N
%eZ/NSArea{ (z,y) } % <z< %, OSySem} < %63/1\]
(2)
%G(N_l)/N SArea{ (z,y) } NT <z< %, 0<y<e” } < %BN/N
Adding (1) and all of the lines of (2) together gives
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Using 14+7r+4---4+r™ = 1™ With r = /N and m = N —1, so that r™+! = (el/N)N =e,
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Thus the exact area must be at least as large as %71_1;% for every single integer N > 1. So

the exact area must also be at least as large as
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by L’Hépital’s rule. Similarly, the exact area must be smaller than (or equal to) %e% 1_16%%

for every single natural number N. So the exact area must also be smaller than or equal to
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We have now shown that

e—1§Area{ (aj,y)‘Ogygem,Ogmgl}ge—l

so that the area must be exactly e — 1.
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