Simple Numerical Integrators - Determining Step Size

In a typical application, one is required to evaluate a given integral $\int_{a}^{b} f(x) d x$ to some specified accuracy. For example, if you are manufacturer and your machinery can only cut materials to an accuracy of $\frac{1}{10}^{\text {th }}$ of a millimeter, there is no point in making design specifications more accurate than $\frac{1}{10}^{\text {th }}$ of a millimeter.

The choice of n, the number of steps, required to achieve the specified accuracy is based on the facts that
a) If $\left|f^{\prime \prime}(x)\right| \leq M$ for all x in the domain of integration, then
the total error introduced by the Midpoint Rule is bounded by $\frac{M}{24} \frac{(b-a)^{3}}{n^{2}}$
b) If $\left|f^{\prime \prime}(x)\right| \leq M$ for all x in the domain of integration, then
the total error introduced by the Trapezoidal Rule is bounded by $\frac{M}{12} \frac{(b-a)^{3}}{n^{2}}$
c) If $\left|f^{(4)}(x)\right| \leq M$ for all x in the domain of integration, then
the total error introduced by Simpson's Rule is bounded by $\frac{M}{180} \frac{(b-a)^{5}}{n^{4}}$
For example, if the integral in question is $\int_{0}^{1} \sin x d x$, then $a=0, b=1$ and $f(x)=\sin x$. In this, rather trivial, case $f^{\prime \prime}(x)=-\sin x$ and $f^{(4)}(x)=\sin x$. As $\sin x$ never has magnitude greater than one, one may choose $M=1$ in applying each of the facts a), b) and c). But this is not the only allowed M. It is perfectly legitimate, though silly, to use $M=2$. Furthermore, $\sin x$ increases as x runs from 0 to $\frac{\pi}{2}>1$. Consequently, the largest value of $\sin x$ on the interval $0 \leq x \leq 1$ is $\sin 1$. Thus it it also correct to use $M=\sin 1$. The moral here is that there are many legal values of M. The smaller the (legal) value of M you use, the better the bound on the error given in facts a), b) and c).

Example 1 Suppose, for example, that we wish to use the Midpoint Rule to evaluate $\int_{0}^{1} e^{-x^{2}} d x$ to within an accuracy of 10^{-6}. (In fact this integral cannot be evaluated exactly, so one must use numerical methods.) The first two derivatives of the integrand are

$$
\frac{d}{d x} e^{-x^{2}}=-2 x e^{-x^{2}} \quad \text { and } \quad \frac{d^{2}}{d x^{2}} e^{-x^{2}}=\frac{d}{d x}\left(-2 x e^{-x^{2}}\right)=-2 e^{-x^{2}}+4 x^{2} e^{-x^{2}}=2\left(2 x^{2}-1\right) e^{-x^{2}}
$$

As x runs from 0 to 1 , the factor $2 x^{2}-1$ increases from $2 x^{2}-\left.1\right|_{x=0}=-1$ to $2 x^{2}-\left.1\right|_{x=1}=1$. So, on the domain of integration, $\left|2 x^{2}-1\right| \leq 1$. As x runs from 0 to 1 , the factor $e^{-x^{2}}$ decreases from $\left.e^{-x^{2}}\right|_{x=0}=1$ to $\left.e^{-x^{2}}\right|_{x=1}=e^{-1}$. So, on the domain of integration, $\left|e^{-x^{2}}\right| \leq 1$. All together,

$$
0 \leq x \leq 1 \Longrightarrow\left|2 x^{2}-1\right| \leq 1, e^{-x^{2}} \leq 1 \Longrightarrow\left|2\left(2 x^{2}-1\right) e^{-x^{2}}\right| \leq 2 \times 1 \times 1=2
$$

so that $\left|f^{\prime \prime}(x)\right| \leq 2$ for all $0 \leq x \leq 1$ and we are allowed to take $M=2$. We now know that the error introduced by the n step Midpoint Rule is at most $\frac{M}{24} \frac{(b-a)^{3}}{n^{2}} \leq \frac{2}{24} \frac{(1-0)^{3}}{n^{2}}=\frac{1}{12 n^{2}}$. This error is at most 10^{-6} if

$$
\frac{1}{12 n^{2}} \leq 10^{-6} \Longleftrightarrow n^{2} \geq \frac{1}{12} 10^{6} \Longleftrightarrow n \geq \sqrt{\frac{1}{12} 10^{6}}=288.7
$$

So 289 steps of the Midpoint Rule will do the job.

Example 2 Suppose now that we wish to use Simpson's Rule to evaluate $\int_{0}^{1} e^{-x^{2}} d x$ to within an accuracy of 10^{-6}. To determine the number of steps required, we must determine how big $\frac{d^{4}}{d x^{4}} e^{-x^{2}}$ can get when $0 \leq x \leq 1$.

$$
\begin{aligned}
\frac{d^{3}}{d x^{3}} e^{-x^{2}} & =\frac{d}{d x}\left(2\left(2 x^{2}-1\right) e^{-x^{2}}\right)=8 x e^{-x^{2}}-4 x\left(2 x^{2}-1\right) e^{-x^{2}}=4\left(-2 x^{3}+3 x\right) e^{-x^{2}} \\
\frac{d^{4}}{d x^{4}} e^{-x^{2}} & =\frac{d}{d x}\left(4\left(-2 x^{3}+3 x\right) e^{-x^{2}}\right)=4\left(-6 x^{2}+3\right) e^{-x^{2}}-8 x\left(-2 x^{3}+3 x\right) e^{-x^{2}} \\
& =4\left(4 x^{4}-12 x^{2}+3\right) e^{-x^{2}}
\end{aligned}
$$

We now have to find an M such that $g(x)=4\left(4 x^{4}-12 x^{2}+3\right) e^{-x^{2}}$ obeys $|g(x)| \leq M$ for all $0 \leq x \leq 1$. Here are three different methods for finding such an M.
Method 1: The first method is to find the largest and small value that $g(x)$ takes on the interval $0 \leq x \leq 1$ by checking the values of $g(x)$ at its critical points and at the end points of the interval of interest. I warn you that, while this method gives the smallest possible value of M, it involves a lot more work than the other methods. It is not recommended. Since

$$
g^{\prime}(x)=4\left(16 x^{3}-24 x\right) e^{-x^{2}}-8 x\left(4 x^{4}-12 x^{2}+3\right) e^{-x^{2}}=-8 x\left(4 x^{4}-20 x^{2}+15\right) e^{-x^{2}}
$$

the critical points of $g(x)$ are $x=0$ and

$$
x^{2}=\frac{20 \pm \sqrt{400-4 \times 4 \times 15}}{8}=\frac{20 \pm \sqrt{160}}{8}=\frac{5 \pm \sqrt{10}}{2}=4.081139,0.918861 \Longrightarrow x= \pm 2.020183, \pm 0.958572
$$

Since

$$
g(0)=12, g(0.958572)=-7.419481, g(1)=-20 e^{-1}=-7.357589
$$

we know that $g(x)$ only takes values between -7.419481 and 12 , so we may choose $M=12$.
Method 2: Consider the three factors $4,4 x^{4}-12 x^{2}+3$, and $e^{-x^{2}}$ of $g(x)$ separately. For $0 \leq x \leq 1$, $e^{-x^{2}} \leq e^{-0}=1$ and

$$
\left|4 x^{4}-12 x^{2}+3\right| \leq 4 x^{4}+12 x^{2}+3 \leq 4+12+3=19
$$

Hence

$$
0 \leq x \leq 1 \Longrightarrow|g(x)| \leq 4\left|4 x^{4}-12 x^{2}+3\right| e^{-x^{2}} \leq 4 \times 19 \times 1=76
$$

So we may choose $M=76$.
Method 3: Again consider the three factors 4, $4 x^{4}-12 x^{2}+3$ and $e^{-x^{2}}$ of $g(x)$ separately. But this time, consider the positive terms of $4 x^{4}-12 x^{2}+3$ and the negative terms of $4 x^{4}-12 x^{2}+3$ separately. For $0 \leq x \leq 1$,

$$
3 \leq 4 x^{4}+3 \leq 7 \text { and }-12 \leq-12 x^{2} \leq 0
$$

Adding these two inequalities together gives

$$
-9 \leq 4 x^{4}-12 x^{2}+3 \leq 7
$$

Consequently, the maximum value of $\left|4 x^{4}-12 x^{2}+3\right|$ for $0 \leq x \leq 1$ is no more than 9 and

$$
|g(x)| \leq 4 \times 9 \times 1=36
$$

We have now found three different possible values of M - all are allowed. In general, the error introduced by the n step Simpson's Rule is at most $\frac{M}{180} \frac{(b-a)^{5}}{n^{4}}$. In this example, $a=0$ and $b=1$ so that this error is at most 10^{-6} if

$$
\frac{M}{180 n^{4}} \leq 10^{-6} \Longleftrightarrow n^{4} \geq \frac{M}{180} 10^{6} \Longleftrightarrow n \geq \sqrt[4]{\frac{M}{180} 10^{6}}= \begin{cases}16.1 & \text { if } M=12 \\ 21.1 & \text { if } M=36 \\ 25.5 & \text { if } M=76\end{cases}
$$

So if we take $M=12$, we conclude that 18 steps of the Simpson's Rule will do the job. If we take $M=36$, we conclude that 22 steps will do the job and if we take $M=76$, we conclude that 26 steps will do the job. This is a typical case. Method 1 gives a slightly smaller of n than the much simpler procedures of Methods 2 and 3. But usually this gain in n is not worth the extra effort required to apply Method 1.

Example 3 Let $I=\int_{\pi / 6}^{\pi / 2} \ln (\sin x) d x$. How large should n be in order that the approximation $I \approx T_{n}$ be accurate to within 10^{-4} ?
Solution. Let $f(x)=\ln (\sin x)$. First, we have to find an M such that $\left|f^{\prime \prime}(x)\right| \leq M$ for all $\frac{\pi}{6} \leq x \leq \frac{\pi}{2}$.

$$
f(x)=\ln (\sin x) \Longrightarrow f^{\prime}(x)=\frac{\cos x}{\sin x}=\cot x \Longrightarrow f^{\prime \prime}(x)=-\csc ^{2} x=-\frac{1}{\sin ^{2} x}
$$

As x runs from $\frac{\pi}{6}$ to $\frac{\pi}{2}, \sin x$ increases from $\sin \frac{\pi}{6}=\frac{1}{2}$ to $\sin \frac{\pi}{2}=1$. So the largest value of $\left|f^{\prime \prime}(x)\right|=$ $\frac{1}{\sin ^{2}(x)}$ on the interval $\frac{\pi}{6} \leq x \leq \frac{\pi}{2}$ occurs at $x=\frac{\pi}{6}$, where the denominator is the smallest, and is $\frac{1}{\sin ^{2} \frac{\pi}{6}}=\frac{1}{(1 / 2)^{2}}=4$. Thus $\left|f^{\prime \prime}(x)\right| \leq 4$ for all $\frac{\pi}{6} \leq x \leq \frac{\pi}{2}$ and we may choose $M=4$.

We wish to find n so that

$$
\frac{M(b-a)^{3}}{12 n^{2}} \leq 10^{-4}
$$

In this case $M=4, a=\frac{\pi}{6}$ and $b=\frac{\pi}{2}$ so

$$
\frac{4(\pi / 2-\pi / 6)^{3}}{12 n^{2}} \leq 10^{-4} \Longleftrightarrow n^{2} \geq \frac{4(\pi / 3)^{3}}{12} 10^{4}=\frac{\pi^{3}}{3^{4}} 10^{4} \Longleftrightarrow n \geq \frac{\pi^{3 / 2}}{3^{2}} 10^{2}=61.87
$$

So any $n \geq 62$ will do the job.

