
Simple Numerical Integrators – Error Behaviour

These notes provide an introduction to the error behaviour of the Midpoint, Trapezoidal and

Simpson’s Rules for generating approximate values of the definite integral
∫ b

a
f(x) dx . These rules

are, in order

∫ b

a

f(x) dx ≈
[

f(x̄1) + f(x̄2) + · · ·+ f(x̄n)
]

∆x (M)

∫ b

a

f(x) dx ≈
[

1
2
f(x0) + f(x1) + f(x2) + · · · + f(xn−1) +

1
2
f(xn)

]

∆x (T)

∫ b

a

f(x) dx ≈
[

f(x0)+ 4f(x1)+ 2f(x2)+ 4f(x3)+ 2f(x4)+ · · ·

+ 2f(xn−2)+ 4f(xn−1)+ f(xn)
]

∆x

3 (S)

where

∆x = b−a

n
, x0 = a, x1 = a+∆x, x2 = a+ 2∆x, · · · , xn−1 = b−∆x, xn = b

x̄1 = x0+x1

2
, x̄2 = x1+x2

2
, · · · , x̄n = xn−1+xn

2

Two obvious considerations in deciding whether or not a given algorithm is of any practical

value are (a) the amount of computational effort required to execute the algorithm and (b) the

accuracy that this computational effort yields. For algorithms like our simple integrators, the bulk of

the computational effort usually goes into evaluating the function f(x). The number of evaluations

of f(x) required for n steps of the Midpoint Rule is n, while the number required for n steps of the

Trapezoidal and Simpson’s Rules is n+1. So all three of our rules require essentially the same amount

of effort – one evaluation of f(x) per step.

To get a first impression of the error behaviour of these methods, we apply them to a problem

that we know the answer to. The exact value of the integral
∫ π

0
sin xdx = − cosx

∣

∣

π

0
is 2. The following

table lists the error in the approximate value for this number generated by our three rules applied

with three different choices of n. It also lists the number of evaluations of f required to compute the

approximation.

Midpoint Trapezoidal Simpson’s

n error #evals error #evals error #evals

10 4.1× 10−1 10 8.2× 10−1 11 5.5× 10−3 11

100 4.1× 10−3 100 8.2× 10−3 101 5.4× 10−7 101

1000 4.1× 10−5 1000 8.2× 10−5 1001 5.5× 10−11 1001

Observe that

• Using 101 evaluations of f worth of Simpson’s rule gives an error 80 times smaller than 1000

evaluations of f worth of the Midpoint Rule.
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• The Trapezoidal Rule error with n steps is about twice the Midpoint Rule error with n steps.

• With the Midpoint Rule, increasing the number of steps by a factor of 10 appears to reduce

the error by about a factor of 100 = 102 = n2.

• With the Trapezoidal Rule, increasing the number of steps by a factor of 10 appears to

reduce the error by about a factor of 102 = n2.

• With Simpson’s Rule, increasing the number of steps by a factor of 10 appears to reduce the

error by about a factor of 104 = n4.

So it looks like

approx value of
∫ b

a
f(x) dx given by n Midpoint steps ≈

∫ b

a
f(x) dx+KM

1
n2

approx value of
∫ b

a
f(x) dx given by n Trapezoidal steps ≈

∫ b

a
f(x) dx+KT

1
n2

approx value of
∫ b

a
f(x) dx given by n Simpson’s steps ≈

∫ b

a
f(x) dx+KM

1
n4

with some constants KM , KT and KS. It also looks like KT ≈ 2KM .

To test these conjectures further, I have applied our three rules with about ten different

choices of n of the form n = 2m with m integer. On the next page are two figures, one containing

the results for the Midpoint and Trapezoidal Rules and the other the results for Simpson’s Rule. For

each of these rules we are expecting the error en (that is, | exact value − approximate value |) with n

steps to be of the form

en = K 1
nk

We would like to test if this is really the case. It is not easy to tell whether or not a given curve

really is a parabola y = x2 or a quartic y = x4. But the eye is pretty good at determining whether or

not a graph is a straight line. Fortunately, there is a little trick that turns the curve en = K 1
nk into

a straight line – no matter what k is. Instead of plotting en against n, plot log en against log n. If

en = K 1
nk , then log en = logK − k log n. So plotting y = log en against x = logn gives the straight

line y = logK − kx, which has slope −k and y–intercept logK.†

The three graphs on the next page plot y = log2 en against x = log2 n for our three rules. I

have chosen to use the base 2 logarithm only because log2 n = log2 2
m = m is nice and simple. For

example, applying Simpson’s Rule with n = 25 = 32 gives the approximate value 2.00000103, which

has error en = 0.00000103. So, I included the data point (x = log2 2
5 = 5, y = log2 0.00000103 =

ln 0.00000103
ln 2 = −19.9) on the Simpson’s Rule graph. For each of the three sets of data points, I have

also plotted a straight line “through” the data points. I used linear regression to decide precisely

which straight line to plot. Linear regression is not part of this course. It provides a formula for the

slope and y–intercept of the straight line which best fits any given set of data points. From the three

† There is a variant of this trick that works even when you don’t know the answer to the

integral ahead of time. Suppose that you suspect that Mn = A +K 1
nk , where A is the exact value

of the integral and suppose that you don’t know the values of A, K and k. Then Mn − M2n =

K 1
nk −K 1

(2n)k
= K

(

1 − 1
2k

)

1
nk , so plotting y = log(Mn −M2n) against x = log n gives the straight

line y = logK
(

1− 1
2k

)

− kx.
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lines, it sure looks like k = 2 for the Midpoint and Trapezoidal Rules and k = 4 for Simpson’s Rule.

It also looks like ratio between the value of K for the Trapezoidal Rule, namely K = 20.7253, and the

value of K for the Midpoint Rule, namely K = 2−0.2706, is pretty close to 2: 20.7253/2−0.2706 = 20.9959.

Error in the approximation, with n steps, to
∫ π

0
sinxdx
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An Error Bound for the Midpoint Rule

We now try develop some understanding as to why we got the above experimental results.

We start with the error generated by a single step of the Midpoint Rule. That is, the error introduced

by the approximation

∫ x1

x0

f(x) dx ≈ f(x̄1)∆x where ∆x = x1 − x0, x̄1 = x0+x1

2

We can get a pretty good idea as to how big this error is by using the quadratic approximation to

f(x) about x̄1:

f(x) ≈ f(x̄1) + f ′(x̄1)(x− x̄1) +
1
2
f ′′(x̄1)(x− x̄1)

2

In fact we can do even better than this. There is an exact formula for f(x) that looks a lot like the

quadratic approximation.

f(x) = f(x̄1) + f ′(x̄1)(x− x̄1) +
1
2f

′′(ξ(x)
)

(x− x̄1)
2

Here ξ(x) is some (unknown) number that depends on x and is somewhere between x̄1 and x. Subbing

this exact formula into the integral gives

∫ x1

x0

f(x) dx = f(x̄1)

∫ x1

x0

1 dx+ f ′(x̄1)

∫ x1

x0

(x− x̄1) dx+ 1
2

∫ x1

x0

f ′′(ξ(x)
)

(x− x̄1)
2 dx

= f(x̄1) x
∣

∣

∣

x1

x0

+ f ′(x̄1)
1
2 (x− x̄1)

2
∣

∣

∣

x1

x0

+ 1
2

∫ x1

x0

f ′′(ξ(x)
)

(x− x̄1)
2 dx

= f(x̄1)∆x+ 1
2

∫ x1

x0

f ′′(ξ(x)
)

(x− x̄1)
2 dx

since x1 − x0 = ∆x and (x1 − x̄1)
2 = (x0 − x̄2)

2 =
(

∆x

2

)2
. Note that the first term on the right hand

side is exactly the Midpoint Rule approximation. So the error that the Midpoint Rule introduces in

the first slice is exactly

∣

∣

∣

∫ x1

x0

f(x) dx− f(x̄1)∆x
∣

∣

∣
= 1

2

∣

∣

∣

∫ x1

x0

f ′′(ξ(x)
)

(x− x̄1)
2 dx

∣

∣

∣

Even though we don’t know exactly what ξ(x) is, this is a very useful formula if we know that |f ′′(x)|

is smaller than some numberM for all x in the domain of integration. For example, when f(x) = sinx,

as in the example that we have been following, we know that |f ′′(x)| = | − sinx| ≤ M = 1 for all x.

Then, |f ′′(ξ(x)
)

| ≤ M , no matter what ξ(x) is, and

∣

∣

∣

∫ x1

x0

f(x) dx− f(x̄1)∆x
∣

∣

∣
≤ 1

2

∫ x1

x0

M(x− x̄1)
2 dx ≤ 1

2
M 1

3
(x− x̄1)

3
∣

∣

∣

x1

x0

= M

6

[

(

x1 − x̄1

)3
−

(

x0 − x̄1

)3
]

= M

6

[

(

∆x

2

)3
−
(

− ∆x

2

)3
]

= M

24∆x3
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This is a bound on the error introduced by the Midpoint Rule in a single step. When there are n

steps, ∆x = b−a

n
so that the error introduced in a single step is bounded by M

24

(

b−a

n

)3
and the total

error is bounded by

∣

∣

∣

∣

∫ b

a

f(x) dx− [f(x̄1) + · · · + f(x̄n)]∆x

∣

∣

∣

∣

≤ nM

24

(

b−a

n

)3
= M

24
(b−a)3

n2

We have just shown that, if |f ′′(x)| ≤ M for all x in the domain of integration,

the total error introduced by the Midpoint Rule is bounded by M

24
(b−a)3

n2

A similar analysis shows that

the total error introduced by the Trapezoidal Rule is bounded by M

12
(b−a)3

n2

and if |f (4)(x)| ≤ M for all x in the domain of integration,

the total error introduced by Simpson’s Rule is bounded by M

180
(b−a)5

n4

For the example
∫ π

0
sinxdx, b − a = π and M , the largest possible value of

∣

∣

d
2

dx2 sinx
∣

∣ (for

the Midpoint and Trapezoidal Rules) or
∣

∣

d
4

dx4 sinx
∣

∣ (for Simpson’s Rule) is 1. So, for the Midpoint

Rule,

|en| ≤
M

24
(b−a)3

n2 = π
3

24
1
n2 = 1.29 1

n2

The data in the graph on page 3 gives |en| ≈ 2−.2706 1
n2 = 0.83 1

n2 which is consistent with the bound

|en| ≤ 1.29 1
n2 .

In a typical application, one is required to evaluate a given integral to some specified accuracy.

For example, if you are manufacturer and your machinery can only cut materials to an accuracy of
1
10

th
of a millimeter, there is no point in making design specifications more accurate than 1

10

th
of

a millimeter. Suppose, for example, that we wish to use the Midpoint Rule to evaluate
∫ 1

0
e−x

2

dx

to within an accuracy of 10−6. (In fact this integral cannot be evaluated exactly, so one must use

numerical methods.) The first two derivatives of the integrand are

d

dx
e−x

2

= −2xe−x
2

and d
2

dx2 e
−x

2

= d

dx

(

− 2xe−x
2)

= −2e−x
2

+ 4x2e−x
2

= 2(2x2 − 1)e−x
2

As x runs from 0 to 1, 2x2 − 1 runs from −1 to 1, so that

0 ≤ x ≤ 1 =⇒ |2x2 − 1| ≤ 1, e−x
2

≤ 1 =⇒
∣

∣2(2x2 − 1)e−x
2∣

∣ ≤ 2

So the error introduced by the n step Midpoint Rule is at most M

24
(b−a)3

n2 ≤ 2
24

(1−0)3

n2 = 1
12n2 . This

error is at most 10−6 if

1
12n2 ≤ 10−6 ⇐⇒ n2 ≥ 1

1210
6 ⇐⇒ n ≥

√

1
1210

6 = 288.7
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So 289 steps of the Midpoint Rule will do the job.

Suppose now that we wish to use Simpson’s Rule to evaluate
∫ 1

0
e−x

2

dx to within an accuracy

of 10−6. To determine the number of steps required, we must determine how big d
4

dx4 e
−x

2

can get

when 0 ≤ x ≤ 1.

d
3

dx3 e
−x

2

= d

dx

(

2(2x2 − 1)e−x
2)

= 8xe−x
2

− 4x(2x2 − 1)e−x
2

= 4(−2x3 + 3x)e−x
2

d
4

dx4 e
−x

2

= d

dx

(

4(−2x3 + 3x)e−x
2)

= 4(−6x2 + 3)e−x
2

− 8x(−2x3 + 3x)e−x
2

= 4(4x4 − 12x2 + 3)e−x
2

We now have to find an M such that g(x) = 4(4x4−12x2+3)e−x
2

obeys |g(x)| ≤ M for all 0 ≤ x ≤ 1.

Here are three different methods for finding such an M .

Method 1: The first method is to find the largest and small value that g(x) takes on the interval

0 ≤ x ≤ 1 by checking the values of g(x) at its critical points and at the end points of the interval of

interest. I warn you that, while this method gives the smallest possible value of M , it involves a lot

more work than the other methods. It is not recommended. Since

g′(x) = 4(16x3 − 24x)e−x
2

− 8x(4x4 − 12x2 + 3)e−x
2

= −8x(4x4 − 20x2 + 15)e−x
2

the critical points of g(x) are x = 0 and

x2 = 20±
√
400−4×4×15

8
= 20±

√
160

8
= 5±

√
10

2
= 4.081139, 0.918861 =⇒ x = ±2.020183,±0.958572

Since

g(0) = 12, g(0.958572) = −7.419481, g(1) = −20e−1 = −7.357589

we know that g(x) only takes values between −7.419481 and 12, so we may choose M = 12.

Method 2: Consider the three factors 4, 4x4 − 12x2 + 3, and e−x
2

of g(x) separately. For 0 ≤ x ≤ 1,

e−x
2

≤ e−0 = 1 and

∣

∣4x4 − 12x2 + 3
∣

∣ ≤ 4x4 + 12x2 + 3 ≤ 4 + 12 + 3 = 19

Hence

0 ≤ x ≤ 1 =⇒ |g(x)| ≤ 4
∣

∣4x4 − 12x2 + 3
∣

∣e−x
2

≤ 4× 19× 1 = 76

So we may choose M = 76.

Method 3: Again consider the three factors 4, 4x4 − 12x2 + 3 and e−x
2

of g(x) separately. But this

time, consider the positive terms of 4x4−12x2+3 and the negative terms of 4x4−12x2+3 separately.

For 0 ≤ x ≤ 1,

3 ≤ 4x4 + 3 ≤ 7 and − 12 ≤ −12x2 ≤ 0

Adding these two inequalities together gives

−9 ≤ 4x4 − 12x2 + 3 ≤ 7

Consequently, the maximum value of |4x4 − 12x2 + 3| for 0 ≤ x ≤ 1 is no more than 9 and

∣

∣g(x)
∣

∣ ≤ 4× 9× 1 = 36
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We have now found three different possible values of M – all are allowed. In general, the

error introduced by the n step Simpson’s Rule is at most M

180
(b−a)5

n4 . In this example, a = 0 and b = 1

so that this error is at most 10−6 if

M

180n4 ≤ 10−6 ⇐⇒ n4 ≥ M

180
106 ⇐⇒ n ≥ 4

√

M

180
106 =

{

16.1 if M = 12
21.1 if M = 36
25.5 if M = 76

So if we take M = 12, we conclude that 18 steps of the Simpson’s Rule will do the job. If we take

M = 36, we conclude that 22 steps will do the job and if we take M = 76, we conclude that 26 steps

will do the job. This is a typical case. Method 1 gives a slightly smaller of n than the much simpler

procedures of Methods 2 and 3. But usually this gain in n is not worth the extra effort required to

apply Method 1.

c© Joel Feldman. 2003. All rights reserved. 7


