Simple ODE Solvers - Derivation

These notes provide derivations of some simple algorithms for generating, numerically, approximate
solutions to the initial value problem
y'(t) = f(ty(t))

y(to) = Yo

Here f(t,y) is a given function, ty is a given initial time and yo is a given initial value for y. The unknown in
the problem is the function y(t). We start with

Euler’s Method

Our goal is to determine (approximately) the unknown function y(t) for ¢ > t;. We are told explic-
itly the value of y(tg), namely yo. Using the given differential equation, we can also determine exactly the
instantaneous rate of change of y at time .

y'(to) = f(to,y(to)) = f(to.%0)

If the rate of change of y(t) were to remain f (to, yo) for all time, then y(t) would be exactly yo+ f (fo, yo) (t—to).
The rate of change of y(t) does not remain f (to, yo) for all time, but it is reasonable to expect that it remains
close to f (to, yo) for ¢ close to to. If this is the case, then the value of y(¢) will remain close to y0+f(t0, yo) (t—to)
for ¢ close to ty. So pick a small number h and define

ti=to+h
y1 =yo + f(to,y0) (t1 — to) = yo + f (o, y0)h
By the above argument
y(t1) = 1

Now we start over. We now know the approximate value of y at time ¢;. If y(¢1) were exactly y;, then the
instantaneous rate of change of y at time ¢; would be exactly f(¢1,y1). If this rate of change were to persist for
all future time, y(t) would be exactly yi + f(t1,41)(t —t1) . As y(t1) is only approximately y; and as the rate
of change of y(t) varies with ¢, the rate of change of y(t) is only approximately f(¢1,y1) and only for ¢ near ¢;.
So we approximate y(t) by y1 + f(tl, yl) (t —t1) for t bigger than, but close to, ¢;. Defining

to=1t1+h=ty+ 2h
yvo=y1+ f(t1,y1)(t2 — t1) = y1 + f(t1, 1)k
we have
y(t2) = y2

We just repeat this argument ad infinitum. Define, for n =0,1,2,3,---
tn = to —|— nh

Suppose that, for some value of n, we have already computed an approximate value y, for y(t,). Then the
rate of change of y(¢) for ¢ close to t, is f(t,y(t)) ~ f(tn,y(tn)) ~ f(tn,yn) and, again for ¢ close to t,,

Y(t) = yn + f(tn,yn)(t — tn). Hence

y(tn+1) ~ Yn+1 = Yn + f(t’n.a yn)h (Eul)

This algorithm is called Euler’s Method. The parameter h is called the step size.

@ Joel Feldman. 2001. All rights reserved. 1

Here is a table applying a few steps of Euler’s method to the initial value problem

Yy =-2t+y
y(0) =3

with step size h = 0.1. For this initial value problem

flty)=—2t+y
to =0
Yo =3

Of course this initial value problem has been chosen for illustrative purposes only. The exact solution is, easily,
y(t) =2+ 2t + e,

tn Yn f(tnsyn) = =2tn + yn Yn+1 = Yn + f(tn,yn) x h

0.0 | 3.000 | —2% 0.0+ 3.000 =3.000 | 3.000+ 3.000x*0.1=3.300
0.1 | 3.300 | —2%0.1+3.300=3.100 | 3.300+ 3.100% 0.1 = 3.610
0.2 | 3.610 | —2%0.2+3.610=3.210 | 3.610+ 3.210% 0.1 = 3.931
0.3 | 3.931 | —2%0.3+3.931 =3.331 | 3.931+3.331%0.1 =4.264
0.4 | 4.264 | —2%0.4+4.264 = 3.464 | 4.264+ 3.464% 0.1 = 4.611
0.5 | 4.611

LR W N~ Of S

The Improved Euler’s Method

Fuler’s method is one algorithm which generates approximate solutions to the initial value problem

y'(t) = f(t,y(t))
y(to) = Yo

In applications, f(¢,y) is a given function and ¢y and yg are given numbers. The function y(¢) is unknown.
Denote by ¢(t) the exact solution for this initial value problem. In other words ¢(t) is the function that obeys

() = f(t, (1))

e(to) = yo
exactly.

Fix a step size h and define t,, = tg+nh. We now derive another algorithm that generates approximate
values for ¢ at the sequence of equally spaced time values tg, t1, ta, ---. We shall denote the approximate
values y,, with

Yn = Sp(tn)

By the fundamental theorem of calculus and the differential equation, the exact solution obeys

ltnsr) = pltn) + /)

n

= o(tn) +/t w [t o)) dt

n

@ Joel Feldman. 2001. All rights reserved. 2

Fix any n and suppose that we have already found yg, y1, --+, yn. Our algorithm for computing y,,+1 will be
of the form

tnt1
Yn+1 = Yn + approximate value for / f (t, cp(t)) dt
t’Vl

In fact Euler’s method is of precisely this form. In Euler’s method, we approximate f(t, go(t)) for
t, <t <t,41 by the constant f(tn, yn) Thus

tni1 tnt1
Euler’s approximate value for / f(t, cp(t)) dt = / f(tn, yn) dt = f(tn, yn)h
tn tn
The area of the complicated region 0 < y < f(t,w(t)), tn, <t < t,41 (represented by the shaded region
under the parabola in the left half of the figure below) is approximated by the area of the rectangle 0 <y <
f (tn, yn), tn, <t <t,t1 (the shaded rectangle in the right half of the figure below).

f(tm @(tn)) —_ f(t, o) f(t"’ go(tn)) T ft, o(t)
i — (t, (1)) [— (t, (1))

tn tn+1 tn tn-i—l
Our second algorithm, the improved Fuler’s method, gets a better approximation by attempting to
approximate by the trapezoid on the right below rather than the rectangle on the right above. The exact area

f(thrla ‘P(thrl)) —_— _ f(thrla ‘P(thrl)) —_— .

F(tu ()~ FEe®) p o) o)

tn tn+1 tn tn-i—l
of this trapezoid is the length h of the base multiplied by the average, 1[f (tn, ¢(tn)) + f (tn+1, ¢(tn41))], of the

heights of the two sides. Of course we do not know ¢(t,,) or ¢(t,+1) exactly. Recall that we have already found
Yo, -, Yn and are in the process of finding y,+1. So we already have an approximation for ¢(t,), namely y,,
but not for ¢(tn+1). Improved Euler uses

(tni1) = @(tn) + @' (tn)h = yn + f(tn, yn)h

in approximating £ [f (fn, ¢(tn)) + f (tn+1, @(tns1))]. Altogether

tnt1
Improved Euler’s approximate value for / f (t, <p(t)) dt
t

n

= %[f(tm yn) + f(tn-l—layn + f(tm yn)h)} h

so that the improved Euler’s method algorithm is

y(thrl) X Yn+1 = Yn + % |:f (tna yn) + .f(thrla Yn + f(tna yn)h)} h (ImpEul)

Here are the first two steps of the improved Euler’s method applied to

Yy =-2t+y
y(0) =3

@ Joel Feldman. 2001. All rights reserved. 3

with h = 0.1. In each step we compute f(t,,yn), followed by y,, + f(tn, yn)h, which we denote 41, followed
by f(tn+1,nt1), followed by Yni1 = yn + 5 [f (tn, yn) + F(tns1, Gns1) | b
flto,y0) = —2%0+3=3
1 =3+3%01=33
f(t1, 1) =—2%01+33=3.1
y1 =3+ 3[3+3.1]%0.1 = 3.305
f(t1,y1) = —2%0.1 4+ 3.305 = 3.105
o = 3.305 + 3.105 % 0.1 = 3.6155
fta,92) = =2 % 0.2+ 3.6155 = 3.2155
yo = 3.305 + 1[3.105 + 3.2155] % 0.1 = 3.621025

toZO y0:3

t1=0.1 y =3.305

FErreeel

Here is a table which gives the first five steps.

n ln Yn f(tnsyn) Un+1 f(tns1, Uny1) Yn+1
0 | 0.0 | 3.000 3.000 3.300 3.100 3.305
1 0.1 | 3.305 3.105 3.616 3.216 3.621
2 0.2 | 3.621 3.221 3.943 3.343 3.949
3 0.3 | 3.949 3.349 4.284 3.484 4.291
4 104 | 4.291 3.491 4.640 3.640 4.647
5 0.5 | 4.647

The Runge-Kutta Method

The Runge-Kutta algorithm is similar to the Euler and improved Euler methods in that it also uses,
in the notation of the last section,

tnt1
Ynil = Yn + approximate value for / f(to(t)) dt
tn
But rather than approximating ftt”“ f(t, go(t)) dt by the area of a rectangle, as does Euler, or by the area of
a trapezoid, as does improved Euler, it approximates by the area under a parabola. That is, it uses Simpson’s
rule. According to Simpson’s rule (if you don’t know Simpson’s rule, just take my word for it)

tnth
/t F(to®) b~ B[f (tns olta)) +4F (o + &0t + 5)) + £ (b + by plta + 1)

n

As we don’t know ¢(t,), ¢(t, + %) or ¢(t, + h), we have to approximate them as well. The Runge-Kutta
algorithm, incorporating all these approximations, is

kna = f(tn,yn)

kg = f(tn + 20, yn + Lkn1)

kng = ftn + 20, yn + Lkn2) (RK)
kna = f(tn + h,yn + hkn3)

Yn+1 = YUn + % [kn,l + 2kn,2 + 2kn,3 + kn,4]

@ Joel Feldman. 2001. All rights reserved. 4

Here are the first two steps of the Runge-Kutta algorithm applied to

y' =—-2t+y
y(0) =3

with h = 0.1.

~
o
I

o

Yo =3
ko1 = f(0,3)=—-2%0+3=3
Yo+ &koy =3+0.05%3=3.15
ko2 = f(0.05,3.15) = —2 % 0.05 + 3.15 = 3.05
Yo + Lkoo = 3+ 0.05 % 3.05 = 3.1525
ko3 = f(0.05,3.1525) = —2 x 0.05 + 3.1525 = 3.0525
Yo + hkos = 3 + 0.1 % 3.0525 = 3.30525
ko.a = f(0.1,3.30525) = —2 % 0.1 + 3.30525 = 3.10525
y1 =3+ %L[3 + 2% 3.05 + 2 % 3.0525 + 3.10525] = 3.3051708
y1 = 3.3051708
k11 = f(0.1,3.3051708) = —2x 0.1 + 3.3051708 = 3.1051708
Y1+ 2k = 3.3051708 + 0.05 * 3.1051708 = 3.4604293
k12 = f(0.15,3.4604293) = —2 0.15 + 3.4604293 = 3.1604293
y1 + Bk = 3.3051708 + 0.05 * 3.1604293 = 3.4631923
k13 = f(0.15,3.4631923) = —2 0.15 + 3.4631923 = 3.1631923
y1 + hk1 3 = 3.3051708 + 0.1 * 3.4631923 = 3.62149
kia = £(0.2,3.62149) = —2 % 0.2 + 3.62149 = 3.22149
yo = 3.3051708 + %1 [3.1051708 + 2 * 3.1604293+
+ 2% 3.1631923 + 3.22149] = 3.6214025

tq

Frerirerbzst el

ta=0.2 y2 =3.6214025

and here is a table giving the first five steps. The intermediate data is only given to three decimal places even
though the computation has been done to many more.

tn | Yn knt | Yn1 | kn2 | Yn2 | ka3 | Yn3 | kna Yn+1

0.0 { 3.000 | 3.000 | 3.150 | 3.050 | 3.153 | 3.053 | 3.305 | 3.105 | 3.305170833
0.1(3.305]3.105|3.460 | 3.160 | 3.463 | 3.163 | 3.621 | 3.221 | 3.621402571
3.62113.221|3.782 | 3.282 | 3.786 | 3.286 | 3.950 | 3.350 | 3.949858497
0.3(3.95013.350|4.117 | 3.417 | 4.121 | 3.421 | 4.292 | 3.492 | 4.291824240
0.4(4.29213.492|4.466 | 3.566 | 4.470 | 3.570 | 4.649 | 3.649 | 4.648720639
0.5]4.648

3 ISR R A
o
)

These notes have, hopefully, motivated the Euler, improved Euler and Runge-Kutta algorithms. So
far we not attempted to see how efficient and how accurate the algorithms are. A first look at those questions
is provided in the notes “Simple ODE Solvers — Error Behaviour”.

@ Joel Feldman. 2001. All rights reserved. 5

