Computation of π

We use the formula

$$\frac{\pi}{4} = 4 \tan^{-1} \frac{1}{5} - \tan^{-1} \frac{1}{239}$$

which was discovered by the English mathematician John Machin. He used it to compute π to 100 decimal places in 1706.

Proof of Machin's Formula

Let $\beta = \tan^{-1} \frac{1}{5}$. Then $\tan \beta = \frac{1}{5}$. Using the double angle formula

$$\tan(2\theta) = \frac{\sin(2\theta)}{\cos(2\theta)} = \frac{2\sin\theta\cos\theta}{\cos^2\theta - \sin^2\theta} = \frac{2\tan\theta}{1 - \tan^2\theta}$$

twice

$$\tan(2\beta) = \frac{2\tan\beta}{1-\tan^2\beta} = \frac{2/5}{1-1/25} = \frac{10}{24} = \frac{5}{12}$$
$$\tan(4\beta) = \frac{2\tan(2\beta)}{1-\tan^2(2\beta)} = \frac{5/6}{1-25/144} = \frac{120}{119}$$

Then using the addition formula

$$\tan(x-y) = \frac{\sin(x-y)}{\cos(x-y)} = \frac{\sin x \cos y - \cos x \sin y}{\cos x \cos y + \sin x \sin y} = \frac{\tan x - \tan y}{1 + \tan x \tan y}$$

and $\tan \frac{\pi}{4} = 1$

$$\tan\left(4\beta - \frac{\pi}{4}\right) = \frac{\frac{120}{119} - 1}{1 + \frac{120}{110}} = \frac{120 - 119}{120 + 119} = \frac{1}{239}$$

Taking the arctan of both sides gives

$$4\tan^{-1}\frac{1}{5} - \frac{\pi}{4} = \tan^{-1}\frac{1}{239}$$

which is what we want.

A Series Expansion for $\tan^{-1} x$

We already know that for |s| < 1

$$\frac{1}{1-s} = 1 + s + s^2 + s^3 + \dots$$

Subbing in $s = -t^2$ gives, for |t| < 1

$$\frac{1}{1+t^2} = 1 - t^2 + t^4 - t^6 + \cdots$$

Integrating gives, for |x| < 1,

$$\tan^{-1} x = \int_0^x \frac{1}{1+t^2} dt = \int_0^x \left[1 - t^2 + t^4 - t^6 + \cdots\right] dt = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots$$

Furthermore, for $0 \le x < 1$, the requirements of the alternating series test apply and truncating the series introduces an error between 0 and the first term omitted.

The Computation of π

$$\tan^{-1}\frac{1}{5} = \frac{1}{5} - \frac{1}{3\times5^3} + \frac{1}{5\times5^5}$$

$$-\frac{1}{7\times5^7} + \frac{1}{9\times5^9} - \frac{1}{11\times5^{11}}$$

$$= 0.2000000000 - 0.00266666667 + 0.0000640000$$

$$-0.0000018286 + 0.0000000569 - 0.0000000019$$

$$= 0.197395562 - e \text{ with } 0 \le e \le 1.9 \times 10^{-9} + 5 \times 0.5 \times 10^{-10}$$

$$\tan^{-1}\frac{1}{239} = \frac{1}{239} - \frac{1}{3\times239^3} + \frac{1}{5\times239^5}$$

$$= 0.0041841004 - 0.0000000244 + 2.6 \times 10^{-13}$$

$$= 0.0041840760 + e' \text{ with } 0 \le e' \le 2.6 \times 10^{-13} + 3 \times 0.5 \times 10^{-10}$$

The extra 10^{-10} terms take round off error into account. So

$$4 \tan^{-1} \frac{1}{5} - \tan^{-1} \frac{1}{239} = 0.785398172 - 4e - e'$$

and

$$\pi = 3.141592688 - 16e - 4e'$$

 $\pi = 3.14159269 - e''$ with e'' between 0 and 4×10^{-8}