## Error Control for the Polar Area Formula

Suppose that we wish to derive a formula for finding the area of the region

$$0 \le r \le f(\theta)$$
  $a \le \theta \le b$ 

Call this area A. Suppose further that

$$f(\theta) \le M \qquad |f'(\theta)| \le L$$

for all  $a \leq \theta \leq b$ .

Divide the interval  $a \leq \theta \leq b$  into n equal subintervals, each of length  $\Delta \theta = \frac{b-a}{n}$ . Let  $\theta_i^*$  be the midpoint of the  $i^{\text{th}}$  interval. On the  $i^{\text{th}}$  interval,  $\theta$  runs from  $\theta_i^* - \frac{1}{2}\Delta\theta$  to  $\theta_i^* + \frac{1}{2}\Delta\theta$  and the radius runs over all values of  $f(\theta)$  with  $\theta_i^* - \frac{1}{2}\Delta\theta \leq \theta \leq \theta_i^* + \frac{1}{2}\Delta\theta$ . Because  $|f'(\theta)| \leq L$  all of these values of  $f(\theta)$  lie between  $r_i = f(\theta_i^*) - \frac{1}{2}L\Delta\theta$  and  $R_i = f(\theta_i^*) + \frac{1}{2}L\Delta\theta$ .



So the area of the region  $0 \le r \le f(\theta)$ ,  $\theta_i^* - \frac{1}{2}\Delta\theta \le \theta \le \theta_i^* + \frac{1}{2}\Delta\theta$  must lie between

$$\frac{1}{2}\Delta\theta\,r_i^2 = \frac{1}{2}\Delta\theta\big[f(\theta_i^*) - \frac{1}{2}L\Delta\theta\big]^2 \quad \text{and} \quad \frac{1}{2}\Delta\theta\,R_i^2 = \frac{1}{2}\Delta\theta\big[f(\theta_i^*) + \frac{1}{2}L\Delta\theta\big]^2$$

Observe that

$$\left[f(\theta_i^*) \pm \frac{1}{2}L\Delta\theta\right]^2 = f(\theta_i^*)^2 \pm Lf(\theta_i^*)\Delta\theta + \frac{1}{4}L^2\Delta\theta^2$$

implies that, since  $f(\theta) \leq M$ ,

$$f(\theta_i^*)^2 - LM\Delta\theta + \frac{1}{4}L^2\Delta\theta^2 \le \left[f(\theta_i^*) \pm \frac{1}{2}L\Delta\theta\right]^2 \le f(\theta_i^*)^2 + LM\Delta\theta + \frac{1}{4}L^2\Delta\theta^2$$

Hence

 $\frac{1}{2}f(\theta_i^*)^2\Delta\theta - \frac{1}{2}LM\Delta\theta^2 + \frac{1}{8}L^2\Delta\theta^3 \leq \text{area of sector } \#\mathrm{i} \leq \frac{1}{2}f(\theta_i^*)^2\Delta\theta + \frac{1}{2}LM\Delta\theta^2 + \frac{1}{8}L^2\Delta\theta^3$  and the total area A obeys

$$\sum_{i=1}^n \left[ \frac{1}{2} f(\theta_i^*)^2 \Delta \theta - \frac{1}{2} LM \Delta \theta^2 + \frac{1}{8} L^2 \Delta \theta^3 \right] \leq A \leq \sum_{i=1}^n \left[ \frac{1}{2} f(\theta_i^*)^2 \Delta \theta + \frac{1}{2} LM \Delta \theta^2 + \frac{1}{8} L^2 \Delta \theta^3 \right]$$

$$\frac{1}{2} \sum_{i=1}^n f(\theta_i^*)^2 \Delta \theta - \frac{1}{2} n LM \Delta \theta^2 + \frac{1}{8} n L^2 \Delta \theta^3 \leq A \leq \sum_{i=1}^n \frac{1}{2} f(\theta_i^*)^2 \Delta \theta + \frac{1}{2} n LM \Delta \theta^2 + \frac{1}{8} n L^2 \Delta \theta^3$$

Since  $\Delta \theta = \frac{b-a}{n}$ ,

$$\frac{1}{2} \sum_{i=1}^{n} f(\theta_i^*)^2 \Delta \theta - \frac{LM}{2} \frac{(b-a)^2}{n} + \frac{L^2}{8} \frac{(b-a)^3}{n^2} \le A \le \sum_{i=1}^{n} \frac{1}{2} f(\theta_i^*)^2 \Delta \theta + \frac{LM}{2} \frac{(b-a)^2}{n} + \frac{L^2}{8} \frac{(b-a)^3}{n^2}$$

Now take the limit as  $n \to \infty$ . Since

$$\lim_{n \to \infty} \left[ \sum_{i=1}^{n} \frac{1}{2} f(\theta_i^*)^2 \Delta \theta \pm \frac{LM}{2} \frac{(b-a)^2}{n} + \frac{L^2}{8} \frac{(b-a)^3}{n^2} \right]$$

$$= \frac{1}{2} \int_a^b f(\theta)^2 d\theta \pm \lim_{n \to \infty} \frac{LM}{2} \frac{(b-a)^2}{n} + \lim_{n \to \infty} \frac{L^2}{8} \frac{(b-a)^3}{n^2}$$

$$= \frac{1}{2} \int_a^b f(\theta)^2 d\theta$$

we have that

$$A = \frac{1}{2} \int_{a}^{b} f(\theta)^{2} d\theta$$

exactly.