
Techniques of Integration – Substitution

The substitution rule for simplifying integrals is just the chain rule rewritten in terms of integrals.
Suppose that F (y) is a function whose derivative is f(y). That is, F (y) is an indefinite integral for f(y) so that

∫

f(y) dy = F (y) + C

Then the chain rule says that, for any function y(x),
d
dxF

(

y(x)
)

= F ′
(

y(x)
)

y′(x) = f
(

y(x)
)

y′(x)

So F
(

y(x)
)

is one function with derivative f
(

y(x)
)

y′(x) and F
(

y(x)
)

is an indefinite integral for f
(

y(x)
)

y′(x).

Thus
∫

f
(

y(x)
)

y′(x) dx = F
(

y(x)
)

+ C or

∫

f
(

y(x)
)

y′(x) dx =
∫

f(y) dy
∣

∣

∣

y=y(x)
(S1)

This is the substitution rule for indefinite integrals. Note that, since f
(

y(x)
)

y′(x), is a function of x, its indefinite
integral must also be a function of x. On the right hand side, evaluating y at y(x) ensures that we end up with
a function of x.

Because F
(

y(x)
)

is one indefinite integral of f
(

y(x)
)

y′(x),
∫ b

a

f
(

y(x)
)

y′(x) dx = F
(

y(x)
)

∣

∣

∣

x=b

x=a
= F

(

y(b)
)

− F
(

y(a)
)

The right hand side is F (y) =
∫

f(y) dy evaluated at y(b) minus the same function evaluated at y(a). So

∫ b

a
f
(

y(x)
)

y′(x) dx =
∫ y(b)

y(a)
f(y) dy (S2)

This is the substitution rule for definite integrals. Notice that to get from the integral on the left hand side to
the integral on the right hand side you

• substitute y(x) → y and y′(x)dx → dy (which looks like dy
dx = y′(x) with the dx multiplied across)

• set the lower limit for the y integral to the value of y (namely y(a)) that corresponds to the lower limit
of the x integral (namely x = a) and

• set the upper limit for the y integral to the value of y (namely y(b)) that corresponds to the upper
limit of the x integral (namely x = b).

The substitution rule is used to simplify integrals, like
∫ π

0
x2 sin

(

1
3x

3
)

dx, in which the integrand

• has one factor
(

sin
(

1
3x

3
)

in this example
)

which is some function
(

sin in this example
)

evaluated at

some complicated argument
(

1
3x

3 in this example
)

and

• has a second factor
(

x2 in this example
)

which is the derivative of the complicated argument, or at
least a constant times the derivative of the complicated argument.

In this case one chooses y(x) to be the complicated argument
(

so y(x) = 1
3x

3 in this example
)

.

Example 1 The integrand of
∫ 1

0

ex sin
(

ex
)

dx

is ex sin
(

ex
)

. One factor of this integrand is sin
(

ex
)

, which is the function sin evaluated at ex. The derivative
of ex is again ex, which is the other factor in the integrand. Choose y(x) = ex and f(y) = sin y. Then
f
(

y(x)
)

= sin
(

ex
)

and y′(x) = ex so
∫ 1

0

ex sin
(

ex
)

dx =

∫ b

a

f
(

y(x)
)

y′(x) dx

with a = 0 and b = 1. As y(a) = y(0) = e0 = 1 and y(b) = y(1) = e1 = e, the substitution rule gives
∫ 1

0

ex sin
(

ex
)

dx =

∫ b

a

f
(

y(x)
)

y′(x) dx =

∫ y(b)

y(a)

f(y) dy =

∫ e

1

sin y dy = − cos y
∣

∣

∣

e

1
= − cos e+ cos 1

In conclusion
∫ 1

0 ex sin
(

ex
)

dx = cos 1− cos e
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Example 2 The integrand of
∫ 1

0

x2 sin
(

x3 + 1
)

dx

is x2 sin
(

x3 + 1
)

. One factor of this integrand is sin
(

x3 + 1
)

, which is the function sin evaluated at x3 + 1. So
set y(x) = x3 + 1. The derivative y′(x) = 3x2 is not quite the other factor, x2, in the integrand. But we can
arrange for y′(x) = 3x2 to appear as a factor in the integrand just by multiplying and dividing by 3.

∫ 1

0

x2 sin
(

x3 + 1
)

dx =

∫ 1

0

1
3 sin

(

x3 + 1
)

3x2dx

The integrand 1
3 sin

(

x3 + 1
)

3x2 now is of the form f
(

y(x)
)

y′(x) with y(x) = x3 + 1 and f(y) = 1
3 sin y. The

limits of integration are x = 0 and x = 1. So, choosing y(x) = x3 + 1, f(y) = 1
3 sin y, a = 0 and b = 1 we have

∫ 1

0

1
3 sin

(

x3 + 1
)

3x2dx =

∫ b

a

f
(

y(x)
)

y′(x) dx =

∫ y(b)

y(a)

f(y) dy =

∫ 2

1

1
3 sin y dy = − 1

3 cos y
∣

∣

∣

2

1
= − cos 2

3 − − cos 1
3

In conclusion
∫ 1

0
sin

(

x3 + 1
)

x2dx = cos 1−cos 2
3

Once one has chosen y(x), one can make the substitution without ever explicitly deciding what f(y)
is. One just has to note that the integrand on the right hand side of the substitution rule

∫ b

a

f
(

y(x)
)

y′(x) dx =

∫ y(b)

y(a)

f(y) dy

is constructed from the integrand on the left hand side by
• substituting y for y(x) and
• substituting dy for y′(x) dx

The substitution dy = y′(x) dx is easily remembered by pretending that dy
dx is an ordinary fraction. Then

cross–multiplying dy
dx = y′(x) gives dy = y′(x) dx.

Example 2 (revisited) Consider
∫ 1

0

x2 sin
(

x3 + 1
)

dx

once again. We have observed that one factor of the integrand is sin
(

x3 + 1
)

, which is sin evaluated at x3 + 1,
and the other factor, x2 is, aside from a factor of 3, the derivative of x3 +1. So we decide to try y(x) = x3 +1.
Substitute y for x3 + 1 and dy for 3x2 dx. That is x3 + 1 = y and dy = 3x2 dx or x2 dx = dy

3 . When x = 0,
y = 03 + 1 = 1. When x = 1, y = 13 + 1 = 2.

∫ 1

0

sin
(

x3 + 1
)

x2dx =

∫ 2

1

sin y dy
3

We ended up with exactly this integral in example 2.

Example 3
∫ π/2

0 cos(3x) dx. Substitute for the argument of cos(3x). That, is y(x) = 3x. We are to substitute

y = 3x and dy = 3 dx or dx = dy
3 . When x = 0, y = 3× 0 = 0. When x = π

2 , y = 3
2π.

∫ π/2

0

cos(3x) dx =

∫ 3π/2

0

cos(y) dy
3 = sin y

3

∣

∣

∣

3π/2

0
= −1

3 − 0
3 = − 1

3
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Example 4
∫ 1

0
1

(2x+1)3 dx. Substitute for the argument, 2x+1, of [2x+1]−3. That is, y = 2x+1 and dy = 2 dx

or dx = dy
2 . When x = 0, y = 2× 0 + 1 = 1. When x = 1, y = 2× 1 + 1 = 3.

∫ 1

0

1
(2x+1)3 dx =

∫ 3

1

1
y3

dy
2 = 1

2

∫ 3

1

y−3 dy = 1
2
y−2

−2

∣

∣

∣

3

1
= 3−2

−4 − 1−2

−4 = 1
4

[

1− 1
9

]

= 2
9

Example 5
∫ 1

0
x

1+x2 dx. Think of the integrand as the product 1
1+x2x. The first factor is the function “one

over” evaluated at the argument 1+ x2. The derivative of the argument 1+ x2 is 2x, which is, except for the 2,
the second factor of the integrand. Substitute y = 1+x2, dy = 2x dx or xdx = dy

2 . When x = 0, y = 1+02 = 1.
When x = 1, y = 1 + 12 = 2.

∫ 1

0

x
1+x2 dx =

∫ 2

1

1
y

dy
2 = 1

2 ln |y|
∣

∣

∣

2

1
= ln 2

2 − 0
2 = 1

2 ln 2

Example 6
∫

x3 cos
(

x4 + 2
)

dx. The integrand is the product of cos evaluated at the argument x4 + 2 times
x3, which aside from a factor of 4, is the derivative of the argument x4 + 2. Substitute y = x4 + 2, dy = 4x3 dx

or x3dx = dy
4 .

∫

x3 cos
(

x4 + 2
)

dx =

∫

cos(y) dy
4 = 1

4 sin y + C

Because we are dealing with indefinite integrals we need not worry about limits of integration. On the other
hand, x3 cos

(

x4 + 2
)

is a function of x. So its indefinite integral
(

which is defined to be a function whose

derivative is x3 cos
(

x4 + 2
) )

must also be a function of x. The answer is 1
4 sin y(x) + C = 1

4 sin
(

x4 + 1
)

+ C.
This is what (S1) says.

Example 7
∫ √

1 + x2 x3 dx. Substitute for the argument of the square root. That is, substitute y = 1 + x2,

dy = 2x dx or dx = dy
2x . You might think that this does not eliminate all of the x’s from

√
1 + x2 x3 dx =√

yx3 dy
2x =

√
yx2 dy

2 . It does, provided you remember to substitute x2 = y − 1 for the remaining factor of x2.

∫

√

1 + x2x3 dx =

∫ √
y(y−1) dy

2 = 1
2

∫

(

y3/2−y1/2
)

dy = 1
2

[

y5/2

5/2 − y3/2

3/2

]

+C = 1
5 (1+x2)5/2− 1

3 (1+x2)3/2+C

Don’t forget to express the final answer in terms of x using y = 1 + x2. Also, don’t forget that you can always
check that

∫

√

1 + x2x3 dx = 1
5 (1 + x2)5/2 − 1

3 (1 + x2)3/2 + C

is correct. Just differentiate the right hand side

d
dx

[

1
5 (1 + x2)5/2 − 1

3 (1 + x2)3/2 + C
]

= 1
5
5
2 (1 + x2)3/2(2x)− 1

3
3
2 (1 + x2)1/2(2x)

= x(1 + x2)3/2 − x(1 + x2)1/2 = x
√

1 + x2
[

(1 + x2)− 1
]

= x
√

1 + x2 x2 = x3
√

1 + x2

and verify that the answer is the same as the original integrand.

Example 8
∫

tanx dx. The secret here is to write the integrand tanx = 1
cosx sinx. Think of the first factor as

the function “one over” evaluated at the argument cosx. The derivative of the argument cosx is, except for a
−1, the same as the second factor sinx. Substitute y = cosx, dy = − sinx dx or sinx dx = dy

−1 .

∫

tanx dx =

∫

1
cosx sinx dx =

∫

1
y

dy
−1 = − ln |y|+ C = − ln | cosx|+ C = ln | cosx|−1 + C = ln | secx|+ C

c© Joel Feldman. 2003. All rights reserved. 3


