Error Formulae for Taylor Polynomial Approximations

Let
Po(z) = f(zo) + f(xo)(w —x0) + -+ + %f(")(wo)(:v — )"

be the Taylor polynomial of degree n for the function f(z) and expansion point zy. Using this polynomial to
approximate f(z) introduces an error

We shall now prove that
En(z) = ﬁf(nﬂ)(z)(gc — x)"*! (1n)

for some z between xy and = and that

These proofs are not part of the official course. It rarely necessary, or even possible, to evaluate E, ()
exactly. It is usually sufficient to find a number M such that ’ f ("“)(z)’ < M for all z between zy and the z
of interest. Both (1,) and (2,) then imply that |E, (z)] < mMu — xo|™ L.

Both (1,) and (2,) are easily proven in the special case n = 0. When n = 0, (1,) and (2,) are the
statements that

f(@) = f(xo) = f'(2)(x — x0) (1o)

for some z between zg and z and that
f@) = fa) = [ £) dz (20)

So (1p) is just a restatement of the mean—value theorem and (2¢) is just a restatement of part of the fundamental
theorem of calculus.

To prove (1,) with n > 1, we need the following small generalization of the mean—value theorem.

Theorem (Generalized Mean—Value Theorem) Let the functions F(x) and G(x) both be defined and
continuous on a < x < b and both be differentiable on a < x < b. Furthermore, suppose that G'(x) # 0 for all
a < x <b. Then, there is a number ¢ obeying a < ¢ < b such that

F(b)-F(a) _ F'(c)
GO —Gla) — G'(0)

Proof: Define

Observe that h(a) = h(b) = 0. So, by the mean—value theorem, there is a number ¢ obeying a < ¢ < b such that
0="H(c)=[F(b) — F(a)]G'(c) — F'(c)[G(b) — G(a)]

As G(a) # G(b) (otherwise the mean—value theorem would imply the existence of an ¢ < z < b obeying
G'(z) = 0), we may divide by G'(c)[G(b) — G(a)] which gives the desired result. [ |
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Proof of (1,): To prove (11), that is (1,) for n = 1, simply apply the generalized mean—value theorem with
F(z) = f(z) — f(z0) — f'(x0)(x — m0), G(x) = (¥ — x0)?, a = 9 and b = 2. Then F(a) = G(a) = 0, so that

F(b) _ F'(c) f@)—f(20)=f' (o) (@=20) _ f'(c)=f (x0)
T

= (x—x0)? 2(c—xo)

for some ¢ between zg and z. By the mean—value theorem (the standard one, but with f(x) replaced by f'(z)),

fl(ci:ig:;(m“) = f"(z), for some z between zg and ¢ (which forces z to also be between z¢ and ). Hence

f(m)fj(z(om):i;ggo)(zfzo) _ %f”(z)
which is exactly (14).

At this stage, we know that (1,) applies to all (sufficiently differentiable) functions for n = 0 and
n = 1. To prove it for general n, we proceed by induction. That is, we assume that we already know that (1,)
applies to n = k — 1 for some k (as is the case for k = 1,2) and that we wish to prove that it also applies to
n = k. We apply the generalized mean—value theorem with F(z) = Ej(z), G(z) = (x — 2¢)**!, a = z¢ and
b=xz. Then F(a) = G(a) = 0, so that

G =0 = T = ey
But
Ei(c) = 4 [ (@) = flao) = /(w0) = -+ = /P (wo) (@ — w0)"]
= [#@) = @) = — e Oo)@ - w0 ]
= 1(e) = f'(a0) = -+ = gt P o) (e — w0) !

The last expression is exactly the definition of Ej_1(c), but for the function f’(z), instead of the function f(z).
But we already know that (1x_1) is true, so we already know that the last expression equals

ﬁ(f’)(kflﬂ)(z)(c . xo)k—lﬂ _ %f(kﬂ)(z)(c _ iCo)k

for some z between xy and c. Subbing this in

By(z)  _ B (c) (k+1)
Tt = Terbtemy = wd T G)
which is exactly (1;). Repeating this for k = 2,3,4, - - - gives (1) for all . [ |

Proof of (2,): We again proceed by induction. That is, we assume that we already know that (2,) applies
ton =k — 1 for some k (as is the case for k = 1) and we then prove that it also applies to n = k. So we are
assuming that

Bi-1(2) = gy /w(:c — )Rl () gy

0

Integrate by parts with u(z) = f*)(2) and v/(2) dz = ﬁ dz. Note that z is now the integration variable

and z is just some constant. So u/(z)dz = f*+1)(2) dz and we may take v(z) = — 2 (z — 2)*. This gives

Bia(o) = k(=24 OC)| T+ [ -2t s

= 1o — 20)* F ¥ () + L / (2 — 2)F FED (2) dz
Since

Bi(x) = f(2) = Pr(z) = f(2) = Peca(2) — (@ — 20)* P (o) = B (@) — (2 — 20)* fP) (o)
we have

Ek(ac) = % /w(CL‘ — Z)kf(k-i-l) (z) dz

Zo

which is exactly (2;). Repeating this for k = 2,3,4,--- gives (2) for all k. [ |
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