
Cylindrical Shells Example

Find the volume of the solid obtained by rotating the region bounded by x = 4− y2 and x = 8− 2y2

about y = 5.

Solution. The region bounded by x = 4− y2 and x = 8 − 2y2 is sketched below. Note that the two
parabolas meet when 4 − y2 = 8 − 2y2 or y2 = 4 or y = ±2. The corresponding x = 4 − (±2)2 = 0.
So, the two parabolas meet at (0,±2). Consider the thin slice in the figure on the right. It runs
horizontally from (4− y2, y) to (8− 2y2, y) and has width dy. When this slice is rotated about y = 5,
it sweeps out a cylindrical shell, as illustrated in the figure on the left. A radius for the shell is shown
in the figure on the right. It is the vertical line half way along the thin slice. The y–coordinate of
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the top end of the radius is 5 and the y–coordinate of the bottom end is y. So the radius has length
5 − y. The height of the shell is the difference between the x–coordinates at the right and left hand
ends of the thin slice. So the height of the shell is (8− 2y2)− (4− y2) = 4− y2. The thickness of the
shell is dy and its volume is 2π(5− y)(4− y2)dy. The total volume of the solid is
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(20− 4y − 5y2 + y3) dy

For any odd power yn of y, and any a, the integral
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yn dy = 0. This is because the area

with −a ≤ y ≤ 0 has the same magnitude but opposite sign as the area with 0 ≤ y ≤ a. See the

figure on the left below. Thus the integrals
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y, and any a, the integral
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yn dy. This is because the area with −a ≤ y ≤ 0 has the

same magnitude and same sign as the area with 0 ≤ y ≤ a. See the figure on the right above.
The volume of the solid is

2π
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