Cylindrical Shells Example

Find the volume of the solid obtained by rotating the region bounded by $x = 4 - y^2$ and $x = 8 - 2y^2$ about y = 5.

Solution. The region bounded by $x = 4 - y^2$ and $x = 8 - 2y^2$ is sketched below. Note that the two parabolas meet when $4 - y^2 = 8 - 2y^2$ or $y^2 = 4$ or $y = \pm 2$. The corresponding $x = 4 - (\pm 2)^2 = 0$. So, the two parabolas meet at $(0, \pm 2)$. Consider the thin slice in the figure on the right. It runs horizontally from $(4 - y^2, y)$ to $(8 - 2y^2, y)$ and has width dy. When this slice is rotated about y = 5, it sweeps out a cylindrical shell, as illustrated in the figure on the left. A radius for the shell is shown in the figure on the right. It is the vertical line half way along the thin slice. The y-coordinate of

the top end of the radius is 5 and the y-coordinate of the bottom end is y. So the radius has length 5 - y. The height of the shell is the difference between the x-coordinates at the right and left hand ends of the thin slice. So the height of the shell is $(8 - 2y^2) - (4 - y^2) = 4 - y^2$. The thickness of the shell is dy and its volume is $2\pi(5 - y)(4 - y^2)dy$. The total volume of the solid is

$$\int_{-2}^{2} 2\pi (5-y)(4-y^2) dy = 2\pi \int_{-2}^{2} (20-4y-5y^2+y^3) \, dy$$

For any **odd power** y^n of y, and any a, the integral $\int_{-a}^{a} y^n dy = 0$. This is because the area with $-a \leq y \leq 0$ has the same magnitude but opposite sign as the area with $0 \leq y \leq a$. See the figure on the left below. Thus the integrals $\int_{-2}^{2} y \, dy = \int_{-2}^{2} y^3 \, dy = 0$. For any **even power** y^n of

y, and any a, the integral $\int_{-a}^{a} y^n dy = 2 \int_{0}^{a} y^n dy$. This is because the area with $-a \le y \le 0$ has the same magnitude and same sign as the area with $0 \le y \le a$. See the figure on the right above.

The volume of the solid is

$$2\pi \int_{-2}^{2} (20 - 4y - 5y^2 + y^3) \, dy = 2\pi \int_{-2}^{2} (20 - 5y^2) \, dy = 4\pi \int_{0}^{2} (20 - 5y^2) \, dy$$
$$= 20\pi \int_{0}^{2} (4 - y^2) \, dy = 20\pi \left[4y - \frac{1}{3}y^3 \right]_{0}^{2} = 20\pi \left[8 - \frac{8}{3} \right] = \boxed{\frac{320}{3}\pi}$$

(c) Joel Feldman. 2003. All rights reserved.