Cylindrical Shells Example

Find the volume of the solid obtained by rotating the region bounded by $x=4-y^{2}$ and $x=8-2 y^{2}$ about $y=5$.
Solution. The region bounded by $x=4-y^{2}$ and $x=8-2 y^{2}$ is sketched below. Note that the two parabolas meet when $4-y^{2}=8-2 y^{2}$ or $y^{2}=4$ or $y= \pm 2$. The corresponding $x=4-(\pm 2)^{2}=0$. So, the two parabolas meet at $(0, \pm 2)$. Consider the thin slice in the figure on the right. It runs horizontally from $\left(4-y^{2}, y\right)$ to $\left(8-2 y^{2}, y\right)$ and has width $d y$. When this slice is rotated about $y=5$, it sweeps out a cylindrical shell, as illustrated in the figure on the left. A radius for the shell is shown in the figure on the right. It is the vertical line half way along the thin slice. The y-coordinate of

the top end of the radius is 5 and the y-coordinate of the bottom end is y. So the radius has length $5-y$. The height of the shell is the difference between the x-coordinates at the right and left hand ends of the thin slice. So the height of the shell is $\left(8-2 y^{2}\right)-\left(4-y^{2}\right)=4-y^{2}$. The thickness of the shell is $d y$ and its volume is $2 \pi(5-y)\left(4-y^{2}\right) d y$. The total volume of the solid is

$$
\int_{-2}^{2} 2 \pi(5-y)\left(4-y^{2}\right) d y=2 \pi \int_{-2}^{2}\left(20-4 y-5 y^{2}+y^{3}\right) d y
$$

For any odd power y^{n} of y, and any a, the integral $\int_{-a}^{a} y^{n} d y=0$. This is because the area with $-a \leq y \leq 0$ has the same magnitude but opposite sign as the area with $0 \leq y \leq a$. See the figure on the left below. Thus the integrals $\int_{-2}^{2} y d y=\int_{-2}^{2} y^{3} d y=0$. For any even power y^{n} of

y, and any a, the integral $\int_{-a}^{a} y^{n} d y=2 \int_{0}^{a} y^{n} d y$. This is because the area with $-a \leq y \leq 0$ has the same magnitude and same sign as the area with $0 \leq y \leq a$. See the figure on the right above.

The volume of the solid is

$$
\begin{aligned}
2 \pi \int_{-2}^{2}\left(20-4 y-5 y^{2}+y^{3}\right) d y & =2 \pi \int_{-2}^{2}\left(20-5 y^{2}\right) d y=4 \pi \int_{0}^{2}\left(20-5 y^{2}\right) d y \\
& =20 \pi \int_{0}^{2}\left(4-y^{2}\right) d y=20 \pi\left[4 y-\frac{1}{3} y^{3}\right]_{0}^{2}=20 \pi\left[8-\frac{8}{3}\right]=\frac{320}{3} \pi
\end{aligned}
$$

