
MATHEMATICS 200 December 2016 Final Exam Solutions

1. Let A = (0, 2, 2), B = (2, 2, 2), C = (5, 2, 1).

(a) Find the parametric equations for the line which contains A and is perpendicular to
the triangle ABC.

(b) Find the equation of the set of all points P such that
−→
PA is perpendicular to

−−→
PB. This

set forms a Plane/Line/Sphere/Cone/Paraboloid/Hyperboloid (circle one) in space.

(c) A light source at the origin shines on the triangle ABC making a shadow on the plane
x+ 7y + z = 32. (See the diagram.) Find Ã.

A

Ã

B

B̃

C
C̃

p0, 0, 0q

x ` 7y ` z “ 32

Solution. (a) We are given one point on the line, so we just need a direction vector.
That direction vector has to be perpendicular to the triangle ABC.

The fast way to get a direction vector is to observe that all three points A, B and C, and
consequently the entire triangle ABC, are contained in the plane y = 2. A normal vector
to that plane, and consequently a direction vector for the desired line, is ̂.

Here is another, more mechanical, way to get a direction vector. The vector from A to B
is 〈2− 0 , 2− 2 , 2− 2〉 = 〈2, , 0, 0〉 and the vector from A to C is 〈5− 0 , 2− 2 , 1− 2〉 =
〈5, , 0,−1〉. So a vector perpendicular to the triangle ABC is

〈2, , 0, 0〉 × 〈5, , 0,−1〉 = det

ı̂ıı ̂ k̂
2 0 0
5 0 −1

 = 〈0 , 2 , 0〉

The vector 1
2
〈0 , 2 , 0〉 = 〈0 , 1 , 0〉 is also perpendicular to the triangle ABC.

So the specified line has to contain the point (0, 2, 2) and have direction vector 〈0, 1, 0〉.
The parametric equations

〈x, y, z〉 = 〈0, 2, 2〉+ t 〈0, 1, 0〉

or

x = 0, y = 2 + t, z = 2

do the job.
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(b) Let P be the point (x, y, z). Then the vector from P to A is 〈0− x , 2− y , 2− z〉
and the vector from P to B is 〈2− x , 2− y , 2− z〉. These two vector are perpendicular
if and only if

0 = 〈−x , 2− y , 2− z〉 · 〈2− x , 2− y , 2− z〉 = x(x− 2) + (y − 2)2 + (z − 2)2

= (x− 1)2 − 1 + (y − 2)2 + (z − 2)2

This is a sphere.

(c) The light ray that forms Ã starts at the origin, passes through A and then intersects
the plane x+ 7y+ z = 32 at Ã. The line from the origin through A has vector parametric
equation

〈x, y, z〉 = 〈0, 0, 0〉+ t 〈0, 2, 2〉 = 〈0, 2t, 2t〉

This line intersects the plane x+ 7y + z = 32 at the point whose value of t obeys

(0) + 7

y︷︸︸︷
(2t) +

z︷︸︸︷
(2t) = 32 ⇐⇒ t = 2

So Ã is (0, 4, 4).

2. (a) Some level curves of a function f(x, y) are plotted in the xy–plane below.

x

y

0

0

´1

1 12 2

´2

3 3

´3

4

´4

R T U

P

Q

S

For each of the four statmements below, circle the letters of all points in the diagram
where the situation applies. For example, if the statement were “These points are on the
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y–axis”, you would circle both P and U , but none of the other letters. You may assume
that a local maximum occurs at point T .

(i) ∇∇∇f is zero P R S T U

(ii) f has a saddle point P R S T U

(iii) the partial derivative fy is positive P R S T U

(iv) the directional derivative of f in the direction 〈0,−1〉 is P R S T U
negative

(b) The diagram below shows three “y traces” of a graph z = F (x, y) plotted on xz–axes.
(Namely the intersections of the surface z = F (x, y) with the three planes (y = 1.9, y = 2,
y = 2.1). For each statement below, circle the correct word.

(i) the first order partial derivative Fx(1, 2) is positive/negative/zero (circle one)

(ii) F has a critical point at (2, 2) true/false (circle one)

(iii) the second order partial derivative Fxy(1, 2) is positive/negative/zero (circle one)

x

z

1

2

3

1 2 3 4

y “ 1.9

y “ 2.0
y “ 2.1

Solution. (a) (i) ∇∇∇f is zero at critical points. The point T is a local maximum and the
point U is a saddle point. The remaining points P , R, S, are not critical points.

(a) (ii) Only U is a saddle point.

(a) (iii) We have fy(x, y) > 0 if f increases as you move vertically upward through (x, y).
Looking at the diagram, we see

fy(P ) < 0 fy(Q) < 0 fy(R) = 0 fy(S) > 0 fy(T ) = 0 fy(U) = 0
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So only S works.

(a) (iv) The directional derivative of f in the direction 〈0,−1〉 is ∇∇∇f · 〈0,−1〉 = −fy. It
is negative if and only if fy > 0. So, again, only S works.

(b) (i) The function z = F (x, 2) is increasing at x = 1, because the y = 2.0 graph in the
diagram has positive slope at x = 1. So Fx(1, 2) > 0.

(b) (ii) The function z = F (x, 2) is also increasing (though slowly) at x = 2, because the
y = 2.0 graph in the diagram has positive slope at x = 2. So Fx(2, 2) > 0. So F does not
have a critical point at (2, 2).

(b) (iii) From the diagram the looks like Fx(1, 1.9) > Fx(1, 2.0) > Fx(1, 2.1). That is, it
looks like the slope of the y = 1.9 graph at x = 1 is larger than the slope of the y = 2.0
graph at x = 1, which in turn is larger than the slope of the y = 2.1 graph at x = 1. So it
looks like Fx(1, y) decreases as y increases through y = 2, and consequently Fxy(1, 2) < 0.

3. Consider the functions F (x, y, z) = z3 + xy2 + xz and G(x, y, z) = 3x− y + 4z. You are
standing at the point P (0, 1, 2).

(a) You jump from P to Q(0.1 , 0.9 , 1.8). Use the linear approximation to determine
approximately the amount by which F changes.

(b) You jump from P in the direction along which G increases most rapidly. Will F
increase or decrease?

(c) You jump from P in a direction 〈a , b , c〉 along which the rates of change of F and
G are both zero. Give an example of such a direction (need not be a unit vector).

Solution. We are going to need the gradients of both F and G at (0, 1, 2). So we compute

∂F

∂x
(x, y, z) = y2 + z

∂F

∂y
(x, y, z) = 2xy

∂F

∂z
(x, y, z) = 3z2 + x

∂G

∂x
(x, y, z) = 3

∂G

∂y
(x, y, z) = −1

∂G

∂z
(x, y, z) = 4

and then
∇∇∇F (0, 1, 2) = 〈3, 0, 12〉 ∇∇∇G(0, 1, 2) = 〈3,−1, 4〉

(a) The linear approximation to F at (0, 1, 2) is

F (x, y, z) ≈ F (0, 1, 2) + Fx(0, 1, 2)x+ Fy(0, 1, 2) (y − 1) + Fz(0, 1, 2) (z − 2)

= 8 + 3x+ 12(z − 2)

In particular

F (0.1 , 0.9 , 1.8)− F (0, 1, 2) ≈ 3(0.1) + 12(−0.2) = −2.1
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(b) The direction along which G increases most rapidly at P is ∇∇∇G(0, 1, 2) = 〈3,−1, 4〉.
The directional derivative of F in that direction is

D 〈3,−1,4〉√
26

F (0, 1, 2) =∇∇∇F (0, 1, 2) · 〈3,−1, 4〉√
26

= 〈3, 0, 12〉 · 〈3,−1, 4〉√
26

> 0

So F increases.

(c) For the rate of change of F to be zero, 〈a , b , c〉must be perpendicular to∇∇∇F (0, 1, 2) =
〈3, 0, 12〉.
For the rate of change of G to be zero, 〈a , b , c〉 must be perpendicular to ∇∇∇G(0, 1, 2) =
〈3,−1, 4〉.
So any nonzero constant times

det

ı̂ıı ̂ k̂
3 0 12
3 −1 4

 = 〈12 , 24 , −3〉 = 3 〈4 , 8 , −1〉

is an allowed direction.

4. Suppose that f(x, y) is twice differentiable (with fxy = fyx), and x = r cos θ and y =
r sin θ.

(a) Evaluate fθ, fr and frθ in terms of r, θ and partial derivatives of f with respect to x
and y.

(b) Let g(x, y) be another function satisfying gx = fy and gy = −fx. Express fr and fθ
in terms of r, θ and gr, gθ.

Solution. (a) By the chain rule

∂

∂θ

[
f
(
r cos θ , r sin θ

)]
= −r sin θ fx

(
r cos θ , r sin θ

)
+ r cos θ fy

(
r cos θ , r sin θ

)
∂

∂r

[
f
(
r cos θ , r sin θ

)]
= cos θ fx

(
r cos θ , r sin θ

)
+ sin θ fy

(
r cos θ , r sin θ

)
To evaluate ∂2

∂r ∂θ

[
f
(
r cos θ , r sin θ

)]
we apply ∂

∂r
to the first row. By the product rule

followed by the chain rule, applying ∂
∂r

to the term −r sin θ fx
(
r cos θ , r sin θ

)
in the first

row gives

∂

∂r

[
− r sin θ fx

(
r cos θ , r sin θ

)]
= − sin θ fx

(
r cos θ , r sin θ

)
− r sin θ

∂

∂r

[
fx
(
r cos θ , r sin θ

)]
= − sin θ fx − r sin θ cos θ fxx − r sin2 θ fxy
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with the arguments of fx, fxx and fxy all being
(
r cos θ , r sin θ

)
. Similarly, applying ∂

∂r

to the term r cos θ fy
(
r cos θ , r sin θ

)
in ∂

∂θ

[
f
(
r cos θ , r sin θ

)]
gives

∂

∂r

[
r cos θ fy

(
r cos θ , r sin θ

)]
= cos θ fy

(
r cos θ , r sin θ

)
+ r cos θ

∂

∂r

[
fy
(
r cos θ , r sin θ

)]
= cos θ fy + r cos2 θfyx + r cos θ sin θ fyy

= cos θ fy + r cos2 θfxy + r sin θ cos θ fyy

since fyx = fxy. All together,

∂2

∂r ∂θ

[
f
(
r cos θ , r sin θ

)]
=
∂

∂r

[
− r sin θ fx

(
r cos θ , r sin θ

)
+ r cos θ fy

(
r cos θ , r sin θ

)]
= − sin θ fx + cos θ fy

− r sin θ cos θ fxx + r[cos2 θ − sin2 θ] fxy + r sin θ cos θ fyy

with the arguments of fx, fy, fxx, fxy and fyy all being
(
r cos θ , r sin θ

)
.

(b) By the chain rule

∂

∂θ

[
g
(
r cos θ , r sin θ

)]
= −r sin θ gx

(
r cos θ , r sin θ

)
+ r cos θ gy

(
r cos θ , r sin θ

)
= −r sin θ fy

(
r cos θ , r sin θ

)
− r cos θ fx

(
r cos θ , r sin θ

)
= −r ∂

∂r

[
f
(
r cos θ , r sin θ

)]
∂

∂r

[
g
(
r cos θ , r sin θ

)]
= cos θ gx

(
r cos θ , r sin θ

)
+ sin θ gy

(
r cos θ , r sin θ

)
= cos θ fy

(
r cos θ , r sin θ

)
− sin θ fx

(
r cos θ , r sin θ

)
=

1

r

∂

∂θ

[
f
(
r cos θ , r sin θ

)]
or

∂

∂r

[
f
(
r cos θ , r sin θ

)]
= −1

r

∂

∂θ

[
g
(
r cos θ , r sin θ

)]
∂

∂θ

[
f
(
r cos θ , r sin θ

)]
= r

∂

∂r

[
g
(
r cos θ , r sin θ

)]
5. The temperature in the plane is given by T (x, y) = ey

(
x2 + y2

)
.

(a) (i) Give the system of equations that must be solved in order to find the warmest
and coolest point on the circle x2 + y2 = 100 by the method of Lagrange multi-
pliers.

(ii) Find the warmest and coolest points on the circle by solving that system.
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(b) (i) Give the system of equations that must be solved in order to find the critical
points of T (x, y).

(ii) Find the critical points by solving that system.

(c) Find the coolest point on the solid disc x2 + y2 ≤ 100.

Solution. By way of preparation, we have

∂T

∂x
(x, y) = 2x ey

∂T

∂y
(x, y) = ey

(
x2 + y2 + 2y

)
(a) (i) For this problem the objective function is T (x, y) = ey

(
x2 + y2

)
and the constraint

function is g(x, y) = x2 + y2 − 100. According to the method of Lagrange multipliers,
Theorem 2.10.2 in the CLP–III text, we need to find all solutions to

Tx = 2x ey = λ(2x) = λgx (E1)

Ty = ey
(
x2 + y2 + 2y

)
= λ(2y) = λgy (E2)

x2 + y2 = 100 (E3)

(a) (ii) According to equation (E1), 2x(ey−λ) = 0. This condition is satisfied if and only
if at least one of x = 0, λ = ey is obeyed.

• If x = 0, then equation (E3) reduces to y2 = 100, which is obeyed if y = ±10.
Equation (E2) then gives the corresponding values for λ, which we don’t need.

• If λ = ey, then equation (E2) reduces to

ey
(
x2 + y2 + 2y

)
= (2y)ey ⇐⇒ ey

(
x2 + y2

)
= 0

which conflicts with (E3). So we can’t have λ = ey.

So the only possible locations of the maximum and minimum of the function T are (0, 10)
and (0,−10). To complete the problem, we only have to compute T at those points.

point (0, 10) (0,−10)

value of T 100e10 100e−10

max min

Hence the maximum value of T (x, y) = ey
(
x2 + y2

)
on x2 + y2 = 100 is 100e10 at (0, 10)

and the minimum value is 100e−10 at (0,−10).

We remark that, on x2 + y2 = 100, the objective function T (x, y) = ey
(
x2 + y2

)
= 100ey.

So of course the maximum value of T is achieved when y is a maximum, i.e. when y = 10,
and the minimum value of T is achieved when y is a minimum, i.e. when y = −10.
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(b) (i) By definition, the point (x, y) is a critical point of T (x, y) if ane only if

Tx = 2x ey = 0 (E1)

Ty = ey
(
x2 + y2 + 2y

)
= 0 (E2)

(b) (ii) Equation (E1) forces x = 0. When x = 0, equation (E2) reduces to

ey
(
y2 + 2y

)
= 0 ⇐⇒ y(y + 2) = 0 ⇐⇒ y = 0 or y = −2

So there are two critical points, namely (0, 0) and (0,−2).

(c) Note that T (x, y) = ey
(
x2 + y2

)
≥ 0 on all of R2. As T (x, y) = 0 only at (0, 0), it is

obvious that (0, 0) is the coolest point.

In case you didn’t notice that, here is a more conventional solution.

The coolest point on the solid disc x2 + y2 ≤ 100 must either be on the boundary,
x2 + y2 = 100, of the disc or be in the interior, x2 + y2 < 100, of the disc.

In part (a) (ii) we found that the coolest point on the boundary is (0,−10), where T =
100e−10.

If the coolest point is in the interior, it must be a critical point and so must be either
(0, 0), where T = 0, or (0,−2), where T = 4e−2.

So the coolest point is (0, 0).

6. Let I =
∫ 1

0

∫ 1

x2
x3 sin(y3) dy dx.

(a) Sketch the region of integration in the xy–plane. Label your sketch sufficiently well
that one could use it to determine the limits of double integration.

(b) Evaluate I.

Solution. (a) On the domain of integration,

• x runs from 0 to 1 and

• for each fixed x in that range, y runs from x2 to 1.

The figure on the left below is a sketch of that domain, together with a generic vertical
strip as was used in setting up the integral.

x

y

y “ 1

y “ x2

p1,1q

x

y

y “ 1

x “ ?
y

p1,1q
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(b) As it stands, the inside integral, over y, looks pretty nasty because sin(y3) does not
have an obvious antiderivative. So let’s reverse the order of integration. The given integral
was set up using vertical strips. So, to reverse the order of integration, we use horizontal
strips as in the figure on the right above. Looking at that figure we see that, on the
domain of integration,

• y runs from 0 to 1 and

• for each fixed y in that range, x runs from 0 to
√
y.

So

I =

∫ 1

0

dy

∫ √y
0

dx x3 sin(y3)

=

∫ 1

0

dy sin(y3)

[
x4

4

]√y
0

=
1

4

∫ 1

0

dy y2 sin(y3)

=
1

4

[
−cos(y3)

3

]1
0

=
1− cos(1)

12

7. Let S be the region on the first octant (so that x, y, z ≥ 0) which lies above the cone
z =

√
x2 + y2 and below the sphere (z − 1)2 + x2 + y2 = 1. Let V be its volume.

(a) Express V as a triple integral in cylindrical coordinates.

(b) Express V as an triple integral in spherical coordinates.

(c) Calculate V using either of the integrals above.

Solution. Note that both the sphere x2 + y2 + (z − 1)2 = 1 and the cone z =
√
x2 + y2

are invariant under rotations around the z–axis. The sphere x2 + y2 + (z − 1)2 = 1 and
the cone z =

√
x2 + y2 intersect when z =

√
x2 + y2, so that x2 + y2 = z2, and

x2 + y2 + (z − 1)2 = z2 + (z − 1)2 = 1 ⇐⇒ 2z2 − 2z = 0 ⇐⇒ 2z(z − 1) = 0

⇐⇒ z = 0, 1

So the surfaces intersect on the circle z = 1, x2 + y2 = 1 and

S =
{

(x, y, z)
∣∣ x, y ≥ 0, x2 + y2 ≤ 1,

√
x2 + y2 ≤ z ≤ 1 +

√
1− x2 − y2

}
Here is a sketch of the y = 0 cross section of S.
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x

z

π
4

S

z “ 1

x2 ` y2 ` pz ´ 1q2 “ 1
or z ´ 1 “ ˘a

1 ´ x2 ´ y2

z “ a
x2 ` y2

p1,0,1q

(a) In cylindrical coordinates

• the condition x, y ≥ 0 is 0 ≤ θ ≤ π/2,

• the condition x2 + y2 ≤ 1 is r ≤ 1, and

• the conditions
√
x2 + y2 ≤ z ≤ 1 +

√
1− x2 − y2 are r ≤ z ≤ 1 +

√
1− r2, and

• dV = r dr dθ dz.

So

V =

∫∫∫
S

dV =

∫ 1

0

dr

∫ π/2

0

dθ

∫ 1+
√
1−r2

r

dz r

(b) In spherical coordinates,

• the cone z =
√
x2 + y2 becomes

ρ cosϕ =

√
ρ2 sin2 ϕ cos2 θ + ρ2 sin2 ϕ sin2 θ = ρ sinϕ ⇐⇒ tanϕ = 1 ⇐⇒ ϕ =

π

4

• so that, on S, the spherical coordinate ϕ runs from ϕ = 0 (the positive z –axis) to
ϕ = π/4 (the cone z =

√
x2 + y2), which keeps us above the cone,

• the condition x, y ≥ 0 is 0 ≤ θ ≤ π/2,

• the condition x2 + y2 + (z − 1)2 ≤ 1, (which keeps us inside the sphere), becomes

ρ2 sin2 ϕ cos2 θ + ρ2 sin2 ϕ sin2 θ +
(
ρ cosϕ− 1

)2 ≤ 1

⇐⇒ ρ2 sin2 ϕ+ ρ2 cos2 ϕ− 2ρ cosϕ+ 1 ≤ 1

⇐⇒ ρ2 − 2ρ cosϕ ≤ 0

⇐⇒ ρ ≤ 2 cosϕ

• and dV = ρ2 sinϕ dρ dθ dϕ.
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So

V =

∫∫∫
S

dV =

∫ π/4

0

dϕ

∫ π/2

0

dθ

∫ 2 cosϕ

0

dρ ρ2 sinϕ

(c) We’ll evaluate V using the spherical coordinate integral of part (b).

V =

∫ π/4

0

dϕ

∫ π/2

0

dθ

∫ 2 cosϕ

0

dρ ρ2 sinϕ

=
8

3

∫ π/4

0

dϕ

∫ π/2

0

dθ cos3 ϕ sinϕ

=
8

3

π

2

[
−cos4 ϕ

4

]π/4
0

=
π

3

[
1− 1

(
√

2)4

]
=
π

4

8. Let E be the region bounded by the planes y = 0, y = 2, y+z = 3 and the surface z = x2.
Consider the intergal

I =

∫∫∫
E

f(x, y, z) dV

Fill in the blanks below. In each part below, you may need only one integral to express
your answer. In that case, leave the other blank.

(a) I =

∫ ∫ ∫
f(x, y, z) dz dx dy +

∫ ∫ ∫
f(x, y, z) dz dx dy

(b) I =

∫ ∫ ∫
f(x, y, z) dx dy dz +

∫ ∫ ∫
f(x, y, z) dx dy dz

(c) I =

∫ ∫ ∫
f(x, y, z) dy dx dz +

∫ ∫ ∫
f(x, y, z) dy dx dz

Solution. First, we need to develop an understanding of what E looks like. Note that
all of the equations y = 0, y = 2, y + z = 3 and z = x2 are invariant under x → −x. So
E is invariant under x→ −x, i.e. is symmetric about the yz–plane. We’ll sketch the first
octant (i.e. x, y, z ≥ 0) part of E. There is also a x ≤ 0, y ≥ 0, z ≥ 0 part.

Here are sketches of the plane y = 2, on the left, the plane y + z = 3 in the centre and of
the “tunnel” bounded by the coordinate planes x = 0, y = 0, z = 0 and the planes y = 2,
y + z = 3, on the right.
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z

y

x
y “ 2

z

y

x

y ` z “ 3

z

y

x

y ` z “ 3

y “ 2

Now here is the parabolic cylinder z = x2 on the left. E is constructed by using the
parabolic cylinder z = x2 to chop the front off of the tunnel x ≥ 0, 0 ≤ y ≤ 2, z ≥ 0,
y + z ≤ 3. The figure on the right is a sketch.

z

y
x

z “ x2

z

y
x

z “ x2

y ` z “ 3

y “ 2

p?
3, 0, 3q

p0, 0, 3q

p0, 2, 1q

p1, 2, 1q
So

E =
{

(x, y, z)
∣∣ 0 ≤ y ≤ 2, x2 ≤ z ≤ 3− y

}
(a) On E

• y runs from 0 to 2.

• For each fixed y in that range, (x, z) runs over
{

(x, z)
∣∣ x2 ≤ z ≤ 3− y

}
.

• In particular, the largest x2 is 3− y (when z = 3− y). So x runs from −
√

3− y to√
3− y.

• For fixed y and x as above, z runs from x2 to 3− y.

so that

I =

∫∫∫
E

f(x, y, z) dV =

∫ 2

0

∫ √3−y
−
√
3−y

∫ 3−y

x2
f(x, y, z) dz dx dy
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(b) On E

• z runs from 0 to 3.

• For each fixed z in that range, (x, y) runs over{
(x, y)

∣∣ 0 ≤ y ≤ 2, x2 ≤ z ≤ 3− y
}

=
{

(x, y)
∣∣ 0 ≤ y ≤ 2, y ≤ 3− z, x2 ≤ z

}
In particular, y runs from 0 to the minimum of 2 and 3− z.

• So if 0 ≤ z ≤ 1 (so that 3− z ≥ 2), (x, y) runs over
{

(x, y)
∣∣ 0 ≤ y ≤ 2, x2 ≤ z

}
,

while

• if 1 ≤ z ≤ 3, (so that 3− z ≤ 2), (x, y) runs over
{

(x, y)
∣∣ 0 ≤ y ≤ 3− z, x2 ≤ z

}
,

so that

I =

∫ 1

0

∫ 2

0

∫ √z
−
√
z

f(x, y, z) dx dy dz +

∫ 3

1

∫ 3−z

0

∫ √z
−
√
z

f(x, y, z) dx dy dz

(c) On E

• z runs from 0 to 3.

• For each fixed z in that range, (x, y) runs over{
(x, y)

∣∣ 0 ≤ y ≤ 2, x2 ≤ z ≤ 3− y
}

In particular, y runs from 0 to the minimum of 2 and 3− z.

• So if 0 ≤ z ≤ 1 (so that 3− z ≥ 2), (x, y) runs over
{

(x, y)
∣∣ 0 ≤ y ≤ 2, x2 ≤ z

}
,

while

• if 1 ≤ z ≤ 3, (so that 3− z ≤ 2), (x, y) runs over
{

(x, y)
∣∣ 0 ≤ y ≤ 3− z, x2 ≤ z

}
,

so that

I =

∫ 1

0

∫ √z
−
√
z

∫ 2

0

f(x, y, z) dy dx dz +

∫ 3

1

∫ √z
−
√
z

∫ 3−z

0

f(x, y, z) dy dx dz
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