Taylor Expansions in 2d

In your first year Calculus course you developed a family
of formulae for approximating a function F(t) for ¢ near any

fixed point tg.
F(to + At) = F(to)

F(tg + At) = F(tg) + F'(tg) At
F(to + At) & F(to) + F'(to) At + 2 F"(to) At?

F(to + At) & F(to) + F'(to) At + 5 F" (to) At?
+ ZF® (o)At + -+ LM (1) Ar"
You may have also found a formula for the error introduced
in making this approximation. The error F,(At) is defined
by
F(to + At) = F(to) + F'(to) At + o F" (to) At?
+ 4+ LFEM (1) At" + B, (At)

and obeys

E’n(At) — (n_ll_l)!F(n+l)(t*)Atn+1

for some (unknown) t* between ty and ty + At.
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We now generalize to functions of more than one vari-
able. Suppose we wish to approximate f(xo + Az, yo + Ay)
for Ax and Ay near zero. The trick is to write

flro+Ax,yo+Ay) = F(1) with F(t) = f(zo+tAx, yo+tAy)

and think of xq, yo, Ax and Ay as constants so that F' is
a function of the single variable t. Then we can apply our
single variable formulae with t; = 0 and At = 1. To do so
we need to compute various derivatives of F'(t) at t = 0, by

applying the chain rule to
F(t) = f(x(t),y(t)) with z(t) = zo + tAz, y(t) = yo + tAy

Since % (t) = Az and dty( ) = Ay, the chain rule gives

() = 5L (=), y(t)) Ga(t) + 55 (x(0), (1)) Gy (@)
= oo <t> )Aa:+fy( (1), 9(t)) Ay
TE) = [ % (2(). y(1) Fro(t) + Y (2(2). y(1) Fry(t) | A
[ 22 (2(0), (1) () + 2 (a(8), y() Fy(0)| Ay
= fralA2? + 2fxyAa:Ay—|— fyyAy2

and so on. It’s not hard to prove by induction that, in gen-
eral,
n

F(”)(t) — Z (TZ) 0"__f (ro+tAx, yo+tAy)Ax™ Ay™ ™™

ox™ 8yn m

m=0



where (:1) = Wlm), is the standard binomial coefficient.

So when t = 0,

F(O) — f(xo,yo)
%(O) — fx(xo,yO)AQZ + fy(wo,yo)A’y
C(l;tg (O) — fxa:(woayO)A332 + 2fxy($0a90)A$Ay + fyy(WO;yO)Ay2

Subbing these into

f(xo + Az, yo + Ay) = F(to + At)’tO:O,Atzl
= F(0)+ F'(0) + 5 F"(0) + - - -

gives

f(zo + Az, yo + Ay)

— f(iﬁo,yo)
+ fo(zoy0) AT + fiy(z0,y0) Ay

+ % fa::z:(woayo)A332 + 2 [y (xo,y0) ATAY + fyy(wo,yo)Ay2

+ O(A:c3 - Ay3)




