The Binomial Theorem

In these notes we prove the binomial theorem, which says that for any integer n > 1,
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The proof is by induction. First we check that, when n =1,
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so that (B,) is correct for n = 1. To complete the proof we have to show that, for any

integer n > 2, (B,)) is a consequence of (B, _1). So pick any integer n > 2 and assume that
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The second sum has the same powers of = and y, namely z‘y" ¢, as appear in (B,). The
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make the powers of x and y in the first sum, namely z‘T1y?~1=¢ look more like those of

(Bn), we make the change of summation variable from ¢ to ¢ = ¢ + 1. The first sum
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As (s just a dummy summation variable, we may call it anything we like. In particular,

we may rename ¢ back to £. So we now have
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Recalling that n! =n (n — 1)! we have
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So
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as desired.
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