
The Binomial Theorem

In these notes we prove the binomial theorem, which says that for any integer n ≥ 1,
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The proof is by induction. First we check that, when n = 1,
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so that (Bn) is correct for n = 1. To complete the proof we have to show that, for any

integer n ≥ 2, (Bn) is a consequence of (Bn−1). So pick any integer n ≥ 2 and assume that

(x+ y)n−1 =

n−1
∑

ℓ=0

(

n−1
ℓ

)

xℓyn−1−ℓ

Now compute
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The second sum has the same powers of x and y, namely xℓyn−ℓ, as appear in (Bn). The

make the powers of x and y in the first sum, namely xℓ+1yn−1−ℓ look more like those of

(Bn), we make the change of summation variable from ℓ to ℓ̃ = ℓ+ 1. The first sum
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As ℓ̃ is just a dummy summation variable, we may call it anything we like. In particular,

we may rename ℓ̃ back to ℓ. So we now have
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Recalling that n! = n (n− 1)! we have
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as desired.
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