The Binomial Theorem

In these notes we prove the binomial theorem, which says that for any integer $n \geq 1$,

$$
\begin{equation*}
(x+y)^{n}=\sum_{\ell=0}^{n}\binom{n}{\ell} x^{\ell} y^{n-\ell}=\sum_{\substack{\ell, m \geq 0 \\ \ell+m=n}}\binom{\ell+m}{\ell} x^{\ell} y^{m} \quad \text { where }\binom{n}{\ell}=\frac{n!}{\ell!(n-\ell)!} \tag{n}
\end{equation*}
$$

The proof is by induction. First we check that, when $n=1$,

$$
\begin{aligned}
\sum_{\ell=0}^{n} \frac{n!}{\ell!(n-\ell)!} x^{\ell} y^{n-\ell} & =\left.\frac{n!}{\ell!(n-\ell)!} x^{\ell} y^{n-\ell}\right|_{\substack{n=1 \\
\ell=0}}+\left.\frac{n!}{\ell!(n-\ell)!} x^{\ell} y^{n-\ell}\right|_{\substack{n=1 \\
\ell=1}}=\frac{1!}{0!1!} x^{0} y^{1}+\frac{1!}{1!0!} x^{1} y^{0} \\
& =x+y
\end{aligned}
$$

so that $\left(\mathrm{B}_{\mathrm{n}}\right)$ is correct for $n=1$. To complete the proof we have to show that, for any integer $n \geq 2,\left(\mathrm{~B}_{\mathrm{n}}\right)$ is a consequence of $\left(\mathrm{B}_{\mathrm{n}-1}\right)$. So pick any integer $n \geq 2$ and assume that

$$
(x+y)^{n-1}=\sum_{\ell=0}^{n-1}\binom{n-1}{\ell} x^{\ell} y^{n-1-\ell}
$$

Now compute

$$
(x+y)^{n}=(x+y)^{n-1}(x+y)=\sum_{\ell=0}^{n-1}\binom{n-1}{\ell} x^{\ell+1} y^{n-1-\ell}+\sum_{\ell=0}^{n-1}\binom{n-1}{\ell} x^{\ell} y^{n-\ell}
$$

The second sum has the same powers of x and y, namely $x^{\ell} y^{n-\ell}$, as appear in $\left(\mathrm{B}_{\mathrm{n}}\right)$. The make the powers of x and y in the first sum, namely $x^{\ell+1} y^{n-1-\ell}$ look more like those of $\left(B_{n}\right)$, we make the change of summation variable from ℓ to $\tilde{\ell}=\ell+1$. The first sum

$$
\sum_{\ell=0}^{n-1}\binom{n-1}{\ell} x^{\ell+1} y^{n-1-\ell}=\sum_{\tilde{\ell}=1}^{n}\binom{n-1}{\tilde{\ell}-1} x^{\tilde{\ell}} y^{n-\tilde{\ell}}
$$

As $\tilde{\ell}$ is just a dummy summation variable, we may call it anything we like. In particular, we may rename $\tilde{\ell}$ back to ℓ. So we now have

$$
\begin{aligned}
(x+y)^{n} & =\sum_{\ell=1}^{n}\binom{n-1}{\ell-1} x^{\ell} y^{n-\ell}+\sum_{\ell=0}^{n-1}\binom{n-1}{\ell} x^{\ell} y^{n-\ell} \\
& \left.=\left.\binom{n-1}{\ell-1} x^{\ell} y^{n-\ell}\right|_{\ell=n}+\left.\binom{n-1}{\ell} x^{\ell} y^{n-\ell}\right|_{\ell=0}+\sum_{\ell=1}^{n-1}\left[\begin{array}{c}
n-1 \\
\ell-1
\end{array}\right)+\binom{n-1}{\ell}\right] x^{\ell} y^{n-\ell}
\end{aligned}
$$

Recalling that $n!=n(n-1)$! we have

$$
\begin{aligned}
& \binom{n}{\ell}=\frac{n!}{\ell!(n-\ell)!}=\frac{n(n-1)!}{\ell(\ell-1)!(n-\ell)!}=\frac{n}{\ell}\binom{n-1}{\ell-1} \\
& \binom{n}{\ell}=\frac{n!}{\ell!(n-\ell)!}=\frac{n(n-1)!}{\ell!(n-\ell)(n-\ell-1)!}=\frac{n}{n-\ell}\binom{n-1}{\ell}
\end{aligned}
$$

So

$$
\begin{aligned}
(x+y)^{n} & =\binom{n-1}{n-1} x^{n}+\binom{n-1}{0} y^{n}+\sum_{\ell=1}^{n-1}\left[\binom{n-1}{\ell-1}+\binom{n-1}{\ell}\right] x^{\ell} y^{n-\ell} \\
& =x^{n}+y^{n}+\sum_{\ell=1}^{n-1}\binom{n}{\ell}\left[\frac{\ell}{n}+\frac{n-\ell}{n}\right] x^{\ell} y^{n-\ell} \\
& =x^{n}+y^{n}+\sum_{\ell=1}^{n-1}\binom{n}{\ell} x^{\ell} y^{n-\ell} \\
& =\sum_{\ell=0}^{n}\binom{n}{\ell} x^{\ell} y^{n-\ell}
\end{aligned}
$$

as desired.

