
The Chain Rule

The Problem

You already routinely use the one dimensional chain rule

d
dt
f
(

x(t)
)

= df
dx

(

x(t)
)

dx
dt
(t)

in doing computations like
d
dt

sin(t2) = cos(t2)2t

In this example, f(x) = sin(x) and x(t) = t2.

We now generalize the chain rule to functions of more than one variable. For concreteness, we

consider the case in which all functions are functions of two variables. That is, we find the partial

derivatives ∂g
∂s

and ∂g
∂t

of a function g(s, t) that is defined as a composition

g(s, t) = f
(

x(s, t), y(s, t)
)

We assume that f(x, y), x(s, t) and y(s, t) are all differentiable.

The Solution

Recall that

∂g

∂s
(s0, t0) = lim

∆s→0

g(s0 +∆s, t0)− g(s0, t0)

∆s

= lim
∆s→0

f
(

x(s0 +∆s, t0), y(s0 +∆s, t0)
)

− f
(

x(s0, t0), y(s0, t0)
)

∆s

(1)

To help evaluate this limit, I now introduce some notation, called the “little oh” notation. Roughly

speaking, o(h) is used to stand for any function that tends to zero as h → 0 faster than h does.

Precisely, writing G(h) = o(h) means that

lim
h→0

G(h)
h

= 0

One particular consequence of “G(h) = o(h)” is that, given any constant C > 0, we have that

|G(h)| ≤ C|h| for all sufficiently small h. (To see this, choose ε = C in the δ–ε definition of

lim
h→0

G(h)
h

= 0. Then there is a δ > 0 such that
∣

∣

G(h)
h

∣

∣ < C whenever 0 < |h| < δ.)

We may rewrite the definition of the derivative F ′(s0) using the little oh notation. The original

definition is

F ′(s0) = lim
∆s→0

F (s0 +∆s)− F (s0)

∆s

It is equivalent to

lim
∆s→0

F (s0 +∆s)− F (s0)− F ′(s0)∆s

∆s
= 0 or F (s0 +∆s)− F (s0)− F ′(s0)∆s = o(∆s)
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This is also written

F (s0 +∆s) = F (s0) + F ′(s0)∆s+ o(∆s) (2)

Applying (2) with F (s) = x(s, t0) and F (s) = y(s, t0) (with t0 held fixed),

x(s0 +∆s, t0) = x(s0, t0) +
∂x

∂s
(s0, t0)∆s+ o(∆s) (3)

y(s0 +∆s, t0) = y(s0, t0) +
∂y

∂s
(s0, t0)∆s+ o(∆s) (4)

Similarly, the definition of “f is differentiable at (x0, y0)” is

f(x0 +∆x, y0 +∆y) = f(x0, y0) +
∂f

∂x
(x0, y0)∆x+

∂f

∂y
(x0, y0)∆y + o

(

|(∆x,∆y|
)

(5)

To compute the partial derivative ∂g
∂s

in (1) we use (5) with x0, y0, ∆x and ∆y chosen so that (3)

and (4) become

x(s0 +∆s, t0) = x0 +∆x y(s0 +∆s, t0) = y0 +∆y

We choose
x0 = x(s0, t0) ∆x = ∂x

∂s
(s0, t0)∆s+ o(∆s)

y0 = y(s0, t0) ∆y = ∂y
∂s
(s0, t0)∆s+ o(∆s)

Note that

◦ here ∆x and ∆y are implicitly functions of ∆s. (We are thinking of s0 and t0 as constants.)

◦ in ∆x(∆s) = ∂x
∂s

(s0, t0)∆s + o(∆s), o(∆s) stands for some function E1(∆s) that obeys

lim
∆s→0

E1(∆s)
∆s

= 0.

◦ there is some constant C1 such that |∆x(∆s)| ≤ C1|∆s| for all small ∆s. (We may take C1

to be any number strictly bigger than
∣

∣

∂x
∂s

(s0, t0)
∣

∣.)

◦ in ∆y(∆s) = ∂y
∂s
(s0, t0)∆s + o(∆s), o(∆s) stands for some function E2(∆s) that obeys

lim
∆s→0

E2(∆s)
∆s

= 0. The two functions E1(∆s) and E2(∆s) need not be the same.

◦ there is some constant C2 such that |∆y(∆s)| ≤ C2|∆s| for all small ∆s. (We may take C2 to

be any number strictly bigger than
∣

∣

∂y
∂s
(s0, t0)

∣

∣.)

◦ there is some constant C3 such that |(∆x,∆y)| ≤ C3|∆s| for all small ∆s. (For example, we

could take C3 =
√

C2
1 + C2

2 .) So o
(

|(∆x,∆y|
)

= o(∆s).

Now let’s return to the computation of the partial derivative ∂g
∂s

in (1). Using the notation above

g(s0 +∆s, t0)− g(s0, t0) = f
(

x(s0 +∆s, t0), y(s0 +∆s, t0)
)

− f
(

x(s0, t0), y(s0, t0)
)

= f
(

x0 +∆x, y0 +∆y
)

− f
(

x0, y0
)

= ∂f
∂x

(

x0, y0
)

∆x+ ∂f
∂y

(

x0, y0
)

∆y + o
(

|(∆x,∆y|
)

= ∂f
∂x

(

x(s0, t0), y(s0, t0)
)

∂x
∂s

(s0, t0)∆s+ ∂f
∂y

(

x(s0, t0), y(s0, t0)
)

∂y
∂s

(s0, t0)∆s+ o(∆s)

Dividing by ∆s and taking the limit, we get the upper formula in

∂g

∂s
(s0, t0) =

∂f

∂x

(

x(s0, t0), y(s0, t0)
)∂x

∂s
(s0, t0) +

∂f

∂y

(

x(s0, t0), y(s0, t0)
)∂y

∂s
(s0, t0)

∂g

∂t
(s0, t0) =

∂f

∂x

(

x(s0, t0), y(s0, t0)
)∂x

∂t
(s0, t0) +

∂f

∂y

(

x(s0, t0), y(s0, t0)
)∂y

∂t
(s0, t0)
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The lower formula is derived similarly. This is true for all evaluation points (s0, t0), so

∂g

∂s
(s, t) =

∂f

∂x

(

x(s, t), y(s, t)
)∂x

∂s
(s, t) +

∂f

∂y

(

x(s, t), y(s, t)
)∂y

∂s
(s, t)

∂g

∂t
(s, t) =

∂f

∂x

(

x(s, t), y(s, t)
)∂x

∂t
(s, t) +

∂f

∂y

(

x(s, t), y(s, t)
)∂y

∂t
(s, t)

The Memory Aid

To help remember these formulae, it is useful to pretend that our variables are physical quan-

tities with f, g having units of grams, x, y having units of meters and s, t having units of seconds.

Note that

a) The function g appears once in the numerator on the left. The function f , which is gotten

from g by a change of variables, appears once in the numerator of each term on the right.

b) The variable in the denominator on the left appears once in the denominator of each term on

the right.

c) f is a function of two independent variables, x and y. There are two terms on the right, one for

each independent variable of f . Each term contains the partial derivative of f with respect to

a different independent variable. That independent variable appears once in the denominator

and once in the numerator, so that its units cancel out. Thus all terms on the right hand side

have the same units as that on the left hand side. Namely, grams per second.

d) The left hand side is a function of s and t. Hence the right hand side must also be a function

of s and t. As f is a function of x and y this is achieved by evaluating f at x = x(s, t) and

y = y(s, t).

I recommend strongly that you use the following procedure, without leaving out any steps, the

first couple of dozen times that you use the chain rule.

Step 1 List explicitly all the functions involved and what each is a function of. Ensure that all dif-

ferent functions have different names. Invent new names for some of the functions if necessary.

In the example on the previous page, the list would be

f(x, y) x(s, t) y(s, t) g(s, t) = f
(

x(s, t), y(s, t)
)

While the functions f and g are closely related, they are not the same. One is a function of x

and y while the other is a function of s and t.

Step 2 Write down the template
∂g

∂s
=

∂f

∂s

Note that the template satisfies a) and b) above.

Step 3 Fill in the blanks with everything that makes sense. In particular, since f is a function of x

and y, it may only be differentiated with respect to x and y.

∂g

∂s
=

∂f

∂x

∂x

∂s
+

∂f

∂y

∂y

∂s
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Note that x and y are functions of s so that the derivatives ∂x
∂s

and ∂y
∂s

make sense. Also note

that the units work out right. See c) above.

Step 4 Put in the functional dependence explicitly. Fortunately, there is only one functional depe-

dence that makes sense. See d) above.

∂g

∂s
(s, t) =

∂f

∂x

(

x(s, t), y(s, t)
)∂x

∂s
(s, t) +

∂f

∂y

(

x(s, t), y(s, t)
)∂y

∂s
(s, t)

Example 1: Find d
dt
f
(

x(t), y(t)
)

, for f(x, y) = x2 − y2, x(t) = cos(t) and y(t) = sin(t).

Define g(t) = f
(

x(t), y(t)
)

. The appropriate chain rule for this example is

dg

dt
(t) =

∂f

∂x

(

x(t), y(t)
)dx

dt
(t) +

∂f

∂y

(

x(t), y(t)
)dy

dt
(t)

For the given functions

f(x, y) = x2 − y2

∂f
∂x

(x, y) = 2x ∂f
∂x

(x(t), y(t)) = 2x(t) = 2 cos t

∂f
∂y

(x, y) = −2y ∂f
∂y

(x(t), y(t)) = −2y(t) = −2 sin t

so that
dg

dt
(t) = (2 cos t)(− sin t) + (−2 sin t)(cos t) = −4 sin t cos t

Of course, in this example we can compute g(t) explicitly

g(t) = f
(

x(t), y(t)
)

= x(t)2 − y(t)2 = cos2 t− sin2 t

and then differentiate

g′(t) = 2(cos t)(− sin t)− 2(sin t)(cos t) = −4 sin t cos t

Example 2: Find ∂
∂t
f(x+ ct).

Define u(x, t) = x+ ct and w(x, t) = f(x+ ct) = f
(

u(x, t)
)

. Then

∂
∂t
f(x+ ct) = ∂w

∂t
(x, t) = df

du

(

u(x, t)
)

∂u
∂t
(x, t) = cf ′(x+ ct)

Example 3: Find ∂2

∂t2
f(x+ ct).

Define W (x, t) = ∂w
∂t

(x, t) = cf ′(x+ ct) = F
(

u(x, t)
)

where F (u) = cf ′(u). Then

∂2

∂t2
f(x+ ct) = ∂W

∂t
(x, t) = dF

du

(

u(x, t)
)

∂u
∂t
(x, t) = cf ′′(x+ ct)c = c2f ′′(x+ ct)

Example 4: Suppose that F (P, V, T ) = 0. Find ∂P
∂T

.
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Before we can solve this problem, we first have to decide what it means. This happens regularly

in applications. In fact, this particular problem comes from thermodynamics. The variables

P, V, T are the pressure, volume and temperature, respectively, of some gas. These three variables

are not independent. They are related by an equation of state, here denoted F (P, V, T ) = 0. Given

values for any two of P, V, T , the third can be found by solving F (P, V, T ) = 0. We are being asked

to find ∂P
∂T

. This implicitly instructs us to treat P , in this problem, as the dependent variable. So

a careful wording of this problem (which you will never encounter in the “real world”) would be

the following. The function P (V, T ) is defined by F
(

P (V, T ), V, T ) = 0. Find
(

∂P
∂T

)

V
, that is the

rate of change of pressure as the temperature is varied, while holding the volume fixed.

Since we are not told explicitly what F is, we cannot solve explicitly for P (V, T ). So, instead

we differentiate both sides of

F
(

P (V, T ), V, T
)

= 0

with respect to T , while holding V fixed. Think of the left hand side, F
(

P (V, T ), V, T
)

, as being

F
(

P (V, T ), Q(V, T ), R(V, T )
)

with Q(V, T ) = V and R(V, T ) = T . By the chain rule,

∂
∂T

F
(

P (V, T ), Q(V, T ), R(V, T )
)

= F1
∂P
∂T

+ F2
∂Q
∂T

+ F3
∂R
∂T

= 0

with Fj referring to the partial derivative of F with respect to its jth argument. Experienced chain

rule users never introduce Q and R. Instead, they just write

∂F
∂P

∂P
∂T

+ ∂F
∂V

∂V
∂T

+ ∂F
∂T

∂T
∂T

= 0

Recalling that V and T are the independent variables and that, in computing ∂
∂T

, V is to be

treated as a constant,
∂V
∂T

= 0 ∂T
∂T

= 1

Now putting in the functional dependence

∂F
∂P

(

P (V, T ), V, T
)

∂P
∂T

(V, T ) + ∂F
∂T

(

P (V, T ), V, T
)

= 0

and solving

∂P
∂T

(V, T ) = −
∂F
∂T

(

P (V, T ), V, T
)

∂F
∂P

(

P (V, T ), V, T
)

Example 5: Suppose that f(x, y) = 0. Find d2y
dx2 .

Once again, x and y are not independent variables. Given a value for either x or y, the other

is determined by solving f(x, y) = 0. Since we are asked to find d2y
dx2 , it is y that is to be viewed as

a function of x, rather than the other way around. So f(x, y) = 0 really means, in this problem,

f
(

x, y(x)
)

= 0 for all x. Differentiating both sides of this equation with respect to x,

f
(

x, y(x)
)

= 0 for all x

=⇒ d
dx
f
(

x, y(x)
)

= 0
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Note that d
dx
f
(

x, y(x)
)

is not the same as fx
(

x, y(x)
)

. The former is, by definition, the rate

of change with respect to x of g(x) = f
(

x, y(x)
)

. Precisely,

dg

dx
= lim

∆x→0

g(x+∆x)− g(x)

∆x

= lim
∆x→0

f
(

x+∆x, y(x+∆x)
)

− f
(

x, y(x)
)

∆x
(1)

On the other hand

fx(x, y) = lim
∆x→0

f(x+∆x, y) − f(x, y)

∆x

=⇒ fx
(

x, y(x)
)

= lim
∆x→0

f
(

x+∆x, y(x)
)

− f
(

x, y(x)
)

∆x
(2)

The two right hand sides (1) and (2) are not the same. In (1), as ∆x varies the value of y that is

substituted into the first f(· · ·), namely y(x +∆x) varies. That is, we are computing the rate of

change of f along the (curved) path y = y(x). In (2), the corresponding value of y is y(x) and is

independent of ∆x. That is, we are computing the rate of change of f along a horizontal straight

line. As a concrete example, suppose that f(x, y) = x+ y. Then, y(x) = −x so that

d
dx
f
(

x, y(x)
)

= d
dx
f(x,−x) = d

dx
[x+ (−x)] = d

dx
0 = 0

But f(x, y) = x+ y implies that fx(x, y) = 1 for all x and y so that

fx(x, y(x)) = fx(x, y)
∣

∣

y=−x
= 1

∣

∣

y=−x
= 1

Now back to

f
(

x, y(x)
)

= 0 for all x

=⇒ d
dx
f
(

x, y(x)
)

= 0

=⇒ fx
(

x, y(x)
)

dx
dx

+ fy
(

x, y(x)
)

dy
dx
(x) = 0 by the chain rule

=⇒
dy

dx
(x) = −

fx
(

x, y(x)
)

fy
(

x, y(x)
)

=⇒
d2y

dx2
(x) = −

d

dx

[fx
(

x, y(x)
)

fy
(

x, y(x)
)

]

= −
fy
(

x, y(x)
)

d
dx
[fx

(

x, y(x)
)

]− fx
(

x, y(x)
)

d
dx
[fy

(

x, y(x)
)

]

fy
(

x, y(x)
)2 (3)

by the quotient rule. Now it suffices to substitute in d
dx
[fx

(

x, y(x)
)

] and d
dx
[fy

(

x, y(x)
)

]. For the

former apply the chain rule to h(x) = u
(

x, y(x)
)

with u(x, y) = fx
(

x, y
)

.

d
dx
[fx

(

x, y(x)
)

] = dh
dx
(x)

= ux

(

x, y(x)
)

dx
dx

+ uy

(

x, y(x)
)

dy
dx
(x)

= fxx
(

x, y(x)
)

dx
dx

+ fxy
(

x, y(x)
)

dy
dx
(x)

= fxx
(

x, y(x)
)

− fxy
(

x, y(x)
)

[fx
(

x, y(x)
)

fy
(

x, y(x)
)

]
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Substituting this and

d
dx
[fy

(

x, y(x)
)

] = fyx
(

x, y(x)
)

dx
dx

+ fyy
(

x, y(x)
)

dy
dx
(x)

= fyx
(

x, y(x)
)

− fyy
(

x, y(x)
)

[fx
(

x, y(x)
)

fy
(

x, y(x)
)

]

into the right hand side of (3) gives the final answer.

Example 6: Find the gradient of a function given in polar coordinates.

Once again, figuring out what the question means is half the battle. The gradient is a quantity

that frequently appears in applications (e.g. the temperature gradient). By definition, the gradient

of a function g(x, y) is the vector
(

gx(x, y), gy(x, y)
)

. In this question we are told that we are given

some function f(r, θ) of the polar coordinates r and θ. We are supposed to convert this function

to Cartesian coordinates. This means that we are to consider the function

g(x, y) = f
(

r(x, y), θ(x, y)
)

with
r(x, y) =

√

x2 + y2

θ(x, y) = arctan y
x

Then we are to compute the gradient of g(x, y) and express the answer in terms of r and θ. By

the chain rule
∂g

∂x
=

∂f

∂r

∂r

∂x
+

∂f

∂θ

∂θ

∂x

=
∂f

∂r

1

2

2x
√

x2 + y2
+

∂f

∂θ

−y/x2

1 + (y/x)2

=
∂f

∂r

x
√

x2 + y2
−

∂f

∂θ

y

x2 + y2

=
∂f

∂r

r cos θ

r
−

∂f

∂θ

r sin θ

r2

=
∂f

∂r
cos θ −

∂f

∂θ

sin θ

r

Similarly

∂g

∂y
=

∂f

∂r

∂r

∂y
+

∂f

∂θ

∂θ

∂y

=
∂f

∂r

1

2

2y
√

x2 + y2
+

∂f

∂θ

1/x

1 + (y/x)2

=
∂f

∂r

y
√

x2 + y2
−

∂f

∂θ

x

x2 + y2

=
∂f

∂r
sin θ +

∂f

∂θ

cos θ

r

So

(gx, gy) = fr (cos θ, sin θ) + 1
r
fθ (− sin θ, cos θ)
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or, with all the arguments put in

(

gx(x, y), gy(x, y)
)

=fr
(

r(x, y), θ(x, y)
) (

cos θ(x, y), sin θ(x, y)
)

+ 1
r(x,y)

fθ
(

r(x, y), θ(x, y)
) (

− sin θ(x, y), cos θ(x, y)
)
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