
Directional Derivatives

The Question

Suppose that you leave the point (a, b) moving with velocity ~v = 〈v1, v2〉. Suppose further

that the temperature at (x, y) is f(x, y). Then what rate of change of temperature do you feel?

The Answers

Let’s set the beginning of time, t = 0, to the time at which you leave (a, b). Then at time t you

are at (a+ v1t, b+ v2t) and feel the temperature f(a+ v1t, b+ v2t). So the change in temperature

between time 0 and time t is f(a+v1t, b+v2t)−f(a, b), the average rate of change of temperature,

per unit time, between time 0 and time t is f(a+v1t,b+v2t)−f(a,b)
t

and the instantaneous rate of

change of temperature per unit time as you leave (a, b) is limt→0
f(a+v1t,b+v2t)−f(a,b)

t
. We apply

the approximation

f(a+∆x, b+∆y)− f(a, b) ≈ fx(a, b)∆x+ fy(a, b)∆y

with ∆x = v1t and ∆y = v2t. In the limit as t → 0, the approximation becomes exact and we have

lim
t→0

f(a+v1t,b+v2t)−f(a,b)
t

= lim
t→0

fx(a,b) v1t+fy(a,b) v2t

t

= fx(a, b) v1 + fy(a, b) v2

= 〈fx(a, b), fy(a, b)〉 · 〈v1, v2〉

The vector 〈fx(a, b), fy(a, b)〉 is denoted ~∇f(a, b) and is called “the gradient of the function

f at the point (a, b)”. It has one component for each variable of f . The jth component is

the partial derivative of f with respect to the jth variable, evaluated at (a, b). The expression

〈fx(a, b), fy(a, b)〉 · 〈v1, v2〉 = ~∇f(a, b) · ~v is often denoted D~vf(a, b). So we conclude that the rate

of change of f per unit time as we leave (a, b) moving with velocity ~v is

D~vf(a, b) = ~∇f(a, b) · ~v

We can compute the rate of change of temperature per unit distance in a similar way. The

change in temperature between time 0 and time t is f(a+ v1t, b + v2t) − f(a, b). Between time 0

and time t you have travelled a distance |~v|t. So the instantaneous rate of change of temperature

per unit distance as you leave (a, b) is

lim
t→0

f(a+v1t,b+v2t)−f(a,b)
t|~v|

This is exactly 1
|~v| times limt→0

f(a+v1t,b+v2t)−f(a,b)
t

which we computed above to be D~vf(a, b). So

the rate of change of f per unit distance as we leave (a, b) moving in direction ~v is

~∇f(a, b) · ~v
|~v| = D ~v

|~v|
f(a, b)

This is called the directional derivative of the function f at the point (a, b) in the direction ~v.
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Implications

We have just seen that the instantaneous rate of change of f per unit distance as we leave

(a, b) moving in direction ~v is

~∇f(a, b) · ~v
|~v| = |~∇f(a, b)| cos θ

where θ is the angle between the gradient vector ~∇f(a, b) and the direction vector ~v. Since cos θ

is always between −1 and +1

◦ the direction of maximum rate of increase is that having θ = 0. So to get maximum rate of

increase per unit distance, as you leave (a, b), you should move in the same direction as the

gradient ~∇f(a, b). Then the rate of increase per unit distance is |~∇f(a, b)|.
◦ The direction of minimum (i.e. most negative) rate of increase is that having θ = 180◦. To

get minimum rate of increase per unit distance you should move in the direction opposite
~∇f(a, b). Then the rate of increase per unit distance is −|~∇f(a, b)|.

◦ The directions giving zero rate of increase are those perpendicular to ~∇f(a, b). If you move

in a direction perpendicular to ~∇f(a, b), f(x, y) remains constant as you leave (a, b). That

is, at that instant you are moving along the level curve f(x, y) = f(a, b). So ~∇f(a, b) is

perpendicular to the level curve f(x, y) = f(a, b) at (a, b). The corresponding statement in

three dimensions is that ~∇F (a, b, c) is perpendicular to the level surface F (x, y, z) = F (a, b, c)

at (a, b, c). A good way to find a vector normal to the surface F (x, y, z) = 0 at the point

(a, b, c) is to compute the gradient ~∇F (a, b, c).

An example

Let

f(x, y) = 5− x2 − 2y2 (x0, y0) =
(

− 1,−1
)

Note that for any fixed f0 < 5, f(x, y) = f0 is the ellipse x
2+2y2 = 5−f0. This ellipse has x–semi–

axis
√
5− f0 and y–semi–axis

√

5−f0
2 . The graph z = f(x, y) consists of a bunch of horizontal

ellipses stacked one on top of each other, starting with a point on the z axis when f0 = 5 and

increasing in size as f0 decreases, as illustrated in the first figure below. Several level curves are

sketched in the second figure below. The gradient vector

∇∇∇f(x0, y0) = 〈−2x,−4y〉
∣

∣

(−1,−1)
= 〈2, 4〉 = 2 〈1, 2〉

at (x0, y0) is also illustrated in the second sketch. We have that, at (x0, y0)

◦ the direction of maximum rate of increase is 1√
5
〈1, 2〉 and the maximum rate of increase is

| 〈2, 4〉 | = 2
√
5.

◦ the direction of minimum rate of increase is − 1√
5
〈1, 2〉 and that minimum rate is −| 〈2, 4〉 | =

−2
√
5.

◦ the directions giving zero rate of increase are perpendicular to ∇∇∇f(x0, y0), that is ± 1√
5
(2,−1).

These are the directions of the tangent vector at (x0, y0) to the level curve of f through

(x0, y0).
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