Errors in Measurement

The Question

Suppose that three variables are measured with percentage error $\varepsilon_{1}, \varepsilon_{2}$ and ε_{3} respectively. In other words, if the measured value of variable number i is x_{i} and exact value of variable number i is $x_{i}+\Delta x_{i}$ then

$$
100 \frac{\Delta x_{i}}{x_{i}}=\varepsilon_{i}
$$

Suppose further that a quantity P is then computed by taking the product of the three variables. So the measured value of P is

$$
P\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2} x_{3}
$$

What is the percentage error in this measured value of P ?

The answer

The exact value of P is $P\left(x_{1}+\Delta x_{1}, x_{2}+\Delta x_{2}, x_{3}+\Delta x_{3}\right)$. So, the percentage error in $P\left(x_{1}, x_{2}, x_{3}\right)$ is

$$
100 \frac{P\left(x_{1}+\Delta x_{1}, x_{2}+\Delta x_{2}, x_{3}+\Delta x_{3}\right)-P\left(x_{1}, x_{2}, x_{3}\right)}{P\left(x_{1}, x_{2}, x_{3}\right)}
$$

We can get a much simpler approximate expression for this percentage error, which is good enough for virtually all applications, by applying

$$
\begin{aligned}
& P\left(x_{1}+\Delta x_{1}, x_{2}+\Delta x_{2}, x_{3}+\Delta x_{3}\right) \\
& \quad \approx P\left(x_{1}, x_{2}, x_{3}\right)+P_{x_{1}}\left(x_{1}, x_{2}, x_{3}\right) \Delta x_{1}+P_{x_{2}}\left(x_{1}, x_{2}, x_{3}\right) \Delta x_{2}+P_{x_{3}}\left(x_{1}, x_{2}, x_{3}\right) \Delta x_{3}
\end{aligned}
$$

The three partial derivatives are

$$
\begin{aligned}
& P_{x_{1}}\left(x_{1}, x_{2}, x_{3}\right)=\frac{\partial}{\partial x_{1}}\left[x_{1} x_{2} x_{3}\right]=x_{2} x_{3} \\
& P_{x_{2}}\left(x_{1}, x_{2}, x_{3}\right)=\frac{\partial}{\partial x_{2}}\left[x_{1} x_{2} x_{3}\right]=x_{1} x_{3} \\
& P_{x_{3}}\left(x_{1}, x_{2}, x_{3}\right)=\frac{\partial}{\partial x_{3}}\left[x_{1} x_{2} x_{3}\right]=x_{1} x_{2}
\end{aligned}
$$

So

$$
P\left(x_{1}+\Delta x_{1}, x_{2}+\Delta x_{2}, x_{3}+\Delta x_{3}\right) \approx P\left(x_{1}, x_{2}, x_{3}\right)+x_{2} x_{3} \Delta x_{1}+x_{1} x_{3} \Delta x_{2}+x_{1} x_{2} \Delta x_{3}
$$

and the (approximate) percentage error in P is

$$
\begin{aligned}
& 100 \frac{P\left(x_{1}+\Delta x_{1}, x_{2}+\Delta x_{2}, x_{3}+\Delta x_{3}\right)-P\left(x_{1}, x_{2}, x_{3}\right)}{P\left(x_{1}, x_{2}, x_{3}\right)} \\
& \approx 100 \frac{x_{2} x_{3} \Delta x_{1}+x_{1} x_{3} \Delta x_{2}+x_{1} x_{2} \Delta x_{3}}{P\left(x_{1}, x_{2}, x_{3}\right)} \\
& =100 \frac{x_{2} x_{3} \Delta x_{1}+x_{1} x_{3} \Delta x_{2}+x_{1} x_{2} \Delta x_{3}}{x_{1} x_{2} x_{3}} \\
& =100 \frac{\Delta x_{1}}{x_{1}}+100 \frac{\Delta x_{2}}{x_{2}}+100 \frac{\Delta x_{3}}{x_{3}} \\
& =\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}
\end{aligned}
$$

More generally, if we take a product of n, rather than three, variables the percentage error in the product becomes (approximately) $\sum_{i=1}^{n} \varepsilon_{i}$. This is the basis of the experamentalist's rule of thumb that when you take products, percentage errors add.

