
Limits

Notation.

◦ IN is the set {1, 2, 3, · · ·} of all natural numbers

◦ IR is the set of all real numbers

◦ ∀ is read “for all”

◦ ∃ is read “there exists”

◦ ∈ is read “element of”

◦ /∈ is read “not an element of”

◦
{

A
∣

∣ B
}

is read “the set of all A such that B”

◦ If S is a set and T is a subset of S, then S \ T is
{

x ∈ S
∣

∣ x /∈ T
}

, the set S with

the elements of T removed.

◦ if n is a natural number, IRn is used for both the set of n–component vectors

〈x1, x2, · · · , xn〉 and the set of points (x1, x2, · · · , xn) with n–coordinates.

◦ If S and T are sets, then f : S → T means that f is a function which assigns to each

element of S an element of T .

◦ [a, b] =
{

x ∈ IR
∣

∣ a ≤ x ≤ b
}

(a, b] =
{

x ∈ IR
∣

∣ a < x ≤ b
}

[a, b) =
{

x ∈ IR
∣

∣ a ≤ x < b
}

(a, b) =
{

x ∈ IR
∣

∣ a < x < b
}

Roughly speaking, lim
~x→~a

~f(~x) = ~L means that ~f(~x) approachs ~L as ~x approachs ~a. Here is

the precise definition of limit, and a couple of related definitions.

Definition 1 Let m,n ∈ IN.

(a) Let ~a ∈ IRn and ~L ∈ IRm, and let ~f : IRn \ {~a} → IRm. Then lim
~x→~a

~f(~x) = ~L if

∀ ε > 0 ∃ δ > 0 such that
∣

∣~f(~x)− ~L
∣

∣ < ε whenever 0 < |~x− ~a| < δ

(b) Let ~f : IRn → IRm. Then f is continuous at ~a ∈ IRn if lim
~x→~a

~f(~x) = ~f(~a) and ~f is

continous on IRn if it is continuous at every ~a ∈ IRn.

Remark 2

(a) Here is what that definition of limit says. Suppose you have a magic microscope whose

magnification can be set as high as you like. Suppose that when the magnification is set

to 1
ε , you can only see those points whose distance from ~L is less than ε. The definition
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says that no matter how high you set the magnification, (i.e. no matter how small you set

ε > 0), you will be able to see ~f(~x) whenever ~x is close enough to ~a (if the distance from

~x to ~a is less than δ, then you will certainly see ~f(~x)).

(b) Definition 1.a, of lim
~x→~a

~f(~x), is set up so that the function ~f(~x) is never evaluated at

~x = ~a. Indeed ~f(~x) need not even be defined at ~x = ~a. This is exactly what happens in

the definition of the derivative h′(a) = lim
x→a

h(x)−h(a)
x−a . (In this case f(x) = h(x)−h(a)

x−a .)

We’ll first do a couple of examples with m = n = 1. We’ll do higher dimensional

examples later.

Example 3 In Example 2 of the notes “A Little Logic” we saw that the statement

∀ ε > 0 ∃ δ > 0 such that if |x| < δ then x2 < ε

is true. Consequently

lim
x→0

x2 = 0

Example 4 In this example, we consider lim
x→0

sin 1
x . So fix any real number L and let

◦ S(δ, ε) be the statement “| sin 1
x
− L| < ε whenever 0 < |x| < δ”,

◦ T (ε) be the statement “∃ δ > 0 such that S(δ, ε)” or

∃ δ > 0 such that | sin 1
x − L| < ε whenever 0 < |x| < δ

◦ U be the statement “∀ ε > 0 T (ε)” or

∀ ε > 0 ∃ δ > 0 such that | sin 1
x − L| < ε whenever 0 < |x| < δ

Then

◦ Fix any ε > 0 and any δ > 0. The statement S(δ, ε) is true if all values of sin 1
x , with

0 < |x| < δ, lie in the interval (L − ε, L + ε). As x runs over the interval (0, δ), (so

that, in particular, 0 < |x| < δ) 1
x covers the set

(

1
δ ,∞

)

. This contains many intervals

of length 2π and hence many periods of sin. So, as x runs over the interval (0, δ), sin 1
x

covers all of [−1, 1]. So S(δ, ε) is true if and only if the interval [−1, 1] is contained in

the interval (L−ε, L+ε). In particular, when ε < 1, the interval (L−ε, L+ε), which

has length 2ε, is shorter than [−1, 1] and cannot contain it, so that S(δ, ε) is false.

◦ Because S(δ, ε)is false for all δ > 0 when ε < 1, T (ε) is false for all ε < 1.

◦ U is false since, as we have just seen, T (ε) is false for at least one ε > 0. For example

T
(

1
2

)

is false.

In conclusion, sin 1
x has no limit as x → 0.
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Theorem 5 Let n ∈ IN, ~a,~b ∈ IRn, F,G ∈ IR and

f, g : IRn \ {~a} → IR ~X : IRn \ {~b} → IRn \ {~a} γ : IR → IR

Assume that

lim
~x→~a

f(~x) = F lim
~x→~a

g(~x) = G lim
~y→~b

~X(~y) = ~a lim
t→F

γ(t) = γ(F ) = Γ

Then
(a) lim

~x→~a

[

f(~x) + g(~x)
]

= F +G

(b) lim
~x→~a

f(~x)g(~x) = FG

(c) lim
~x→~a

f(~x)
g(~x)

= F
G

if G 6= 0

(d) lim
~y→~b

f
(

~X(~y)
)

= F

(e) lim
~x→~a

γ
(

f(~x)
)

= Γ

Proof: Note that the ε and δ in “∀ ε > 0 ∃ δ > 0 such that S(δ, ε)” are dummy variables,

just as x is a dummy variable in
∫ 1

0
x dx. You may replace ε and δ by whatever symbols

you like. The hypotheses of this theorem say that

∀ εf > 0 ∃ δf > 0 such that |f(~x)− F | < εf whenever 0 < |~x− ~a| < δf (1)

∀ εg > 0 ∃ δg > 0 such that |g(~x)−G| < εg whenever 0 < |~x− ~a| < δg (2)

∀ εX > 0 ∃ δX > 0 such that |X(~y)− ~a| < εX whenever 0 < |~y −~b| < δX (3)

∀ εγ > 0 ∃ δγ > 0 such that |γ(t)− Γ| < εγ whenever 0 < |t− F | < δγ (4)

(a) We are to prove that

∀ ε > 0 ∃ δ > 0 such that |f(~x) + g(~x)− F −G| < ε whenever 0 < |~x− ~a| < δ

So pick any ε > 0. We must prove that there is a δ > 0 such that

|f(~x) + g(~x)− F −G| < ε whenever 0 < |~x− ~a| < δ

Observe that

|f(~x) + g(~x)− F −G| =
∣

∣[f(~x)− F ] + [g(~x)−G]
∣

∣ ≤ |f(~x)− F |+ |g(~x)−G|
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Set ε1 = ε
2 and ε2 = ε

2 . By (1) with εf = ε1 and (2) with εg = ε2,

∃ δ1 > 0 such that |f(~x)− F | < ε1 whenever 0 < |~x− ~a| < δ1

∃ δ2 > 0 such that |g(~x)−G| < ε2 whenever 0 < |~x− ~a| < δ2

Choose δ = min
{

δ1, δ2
}

. Then whenever 0 < |~x − ~a| < δ we also have 0 < |~x − ~a| < δ1

and 0 < |~x− ~a| < δ2 so that

|f(~x) + g(~x)− F −G| ≤ |f(~x)− F |+ |g(~x)−G| < ε1 + ε2 = ε

(b) is a homework assignment.

(c) We are to prove that

∀ ε > 0 ∃ δ > 0 such that
∣

∣

f(~x)
g(~x)

− F
G

∣

∣ < ε whenever 0 < |~x− ~a| < δ

So pick any ε > 0. We must prove that there is a δ > 0 such that

∣

∣

f(~x)
g(~x) −

F
G

∣

∣ < ε whenever 0 < |~x− ~a| < δ

Set ε1 = 1
6 |G|ε and ε2 = G2

6(|F |+1)ε. By (1) with εf = ε1, (2) with εg = ε2 and (2) with

εg = 1
2 |G|,

∃ δ1 > 0 such that |f(~x)− F | < ε1 whenever 0 < |~x− ~a| < δ1

∃ δ2 > 0 such that |g(~x)−G| < ε2 whenever 0 < |~x− ~a| < δ2

∃ δ3 > 0 such that |g(~x)−G| < 1
2 |G| whenever 0 < |~x− ~a| < δ3

Choose δ = min
{

δ1, δ2, δ3
}

. Then whenever 0 < |~x− ~a| < δ we also have 0 < |~x− ~a| < δ1

and 0 < |~x− ~a| < δ2 and 0 < |~x− ~a| < δ3 so that
∣

∣

∣

∣

f(~x)

g(~x)
−

F

G

∣

∣

∣

∣

=
|f(~x)G− Fg(~x)|

|g(~x)G|
=

|{f(~x)− F}G− F{g(~x)−G}|

|g(~x)G|

≤
|f(~x)− F | |G|+ |F | |g(~x)−G|

|g(~x)| |G|

≤
ε1 |G|+ |F | ε2

1
2
|G| |G|

since |g(~x)| =
∣

∣g(~x)−G+G
∣

∣ ≥ |G| − |g(~x)−G| ≥ 1
2 |G|

= 1
6 |G|ε |G|

G2/2 + |F |
G2/2

G2

6(|F |+1)ε =
ε
3 + 1

3
|F |

|F |+1ε

< ε

(d) We are to prove that

∀ ε > 0 ∃ δ > 0 such that
∣

∣f
(

~X(~y)
)

− F
∣

∣ < ε whenever 0 < |~y −~b| < δ
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So pick any ε > 0. We must prove that there is a δ > 0 such that

∣

∣f
(

~X(~y)
)

− F
∣

∣ < ε whenever 0 < |~y −~b| < δ

By (1) with εf = ε

∃ δf > 0 such that |f(~x)− F | < ε whenever 0 < |~x− ~a| < δf

and (3) with εX = δf ,

∃ δX > 0 such that | ~X(~y)− ~a| < δf whenever 0 < |~y −~b| < δX

Choosing δ = δX , we have

0 < |~y −~b| < δ = δX =⇒ 0 < | ~X(~y)− ~a| < δf =⇒
∣

∣f
(

~X(~y)
)

− F
∣

∣ < ε

(e) has essentially the same proof as part (d). We are to prove that

∀ ε > 0 ∃ δ > 0 such that
∣

∣γ
(

f(~x)
)

− Γ
∣

∣ < ε whenever 0 < |~x− ~a| < δ

So pick any ε > 0. We must prove that there is a δ > 0 such that

∣

∣γ
(

f(~x)
)

− Γ
∣

∣ < ε whenever 0 < |~x− ~a| < δ

By (4) with εγ = ε and the hypothesis that γ(F ) = Γ

∃ δγ > 0 such that |γ(t)− Γ| < ε whenever |t− F | < δγ

By (1) with εf = δγ

∃ δf > 0 such that |f(~x)− F | < δγ whenever 0 < |~x− ~a| < δf

Choosing δ = δf , we have

0 < |~x− ~a| < δ = δf =⇒
∣

∣f(~x)− F
∣

∣ < δγ =⇒
∣

∣γ
(

f(~x)
)

− Γ
∣

∣ < ε
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Example 6 There is a typical application of Theorem 5. Here “
a
= ” means that Theorem

5.a justifies that equality.

lim
(x,y)→(2,3)

(

x+ sin y
) a
= lim

(x,y)→(2,3)
x+ lim

(x,y)→(2,3)
sin y

e
= lim

(x,y)→(2,3)
x+ sin

(

lim
(x,y)→(2,3)

y
)

= 2 + sin 3

lim
(x,y)→(2,3)

(

x2y2 + 1
) a
= lim

(x,y)→(2,3)
x2y2 + lim

(x,y)→(2,3)
1

b
=

(

lim
(x,y)→(2,3)

x
)(

lim
(x,y)→(2,3)

x
)(

lim
(x,y)→(2,3)

y
)(

lim
(x,y)→(2,3)

y
)

+ 1

= 2232 + 1

lim
(x,y)→(2,3)

x+ sin y

x2y2 + 1

c
=

lim(x,y)→(2,3)(x+ sin y)

lim(x,y)→(2,3)(x2y2 + 1)

=
2 + sin 3

37
Here we have used that sinx is a continuous function. In this course we shall assume that

we already know that “standard single variable calculus functions” like sinx, cosx, ex and

so on are continuous.

Example 7 As a second example, we consider lim
(x,y)→(0,0)

x2y
x2+y2 . In this example, both

the numerator, x2y, and the denominator x2 + y2 tend to zero as (x, y) approachs (0, 0),

so we have to be more careful. A good way to see the behaviour of a function f(x, y) when

(x, y) is close to (0, 0) is to switch to the polar coordinates r, θ using

x = r cos θ

x

y (x, y)

r

θy = r sin θ

Recall that the definition of lim
(x,y)→(0,0)

f(x, y) = L is

∀ ε > 0 ∃ δ > 0 such that
∣

∣f(x, y)− L
∣

∣ < ε whenever 0 < |(x, y)| < δ (5)

The condition 0 < |(x, y)| < δ says that 0 < r < δ and no restriction on θ. So substituting

x = r cos θ, y = r sin θ into (5) gives

∀ ε > 0 ∃ δ > 0 such that
∣

∣f(r cos θ, r sin θ)−L
∣

∣ < ε whenever 0 < r < δ, 0 ≤ θ ≤ 2π (6)

For our current example

x2y
x2+y2 = (r cos θ)2(r sin θ)

r2 = r cos2 θ sin θ

As
∣

∣r cos2 θ sin θ
∣

∣ ≤ r → 0 when r → 0, we have

lim
(x,y)→(0,0)

x2y
x2+y2 = 0
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Example 8 As a third example, we consider lim
(x,y)→(0,0)

x2−y2

x2+y2 . Once again, the best way

to see the behaviour of x2−y2

x2+y2 for (x, y) close to (0, 0) is to switch to polar coordinates.

x2−y2

x2+y2 = (r cos θ)2−(r sin θ)2

r2
= cos2 θ − sin2 θ = cos(2θ)

No matter how small you make δ > 0, as (x, y) runs over those points with r = |(x, y)| < δ,
x2−y2

x2+y2 takes all values in the interval [−1, 1]. So lim
(x,y)→(0,0)

x2−y2

x2+y2 does not exist.

f=cos(90◦)=0

f=cos(0)=1

f=cos(30◦)=
√
3/2

f=cos(60◦)=1/2

f=cos(135◦)=−1/
√
2

f=cos(180◦)=−1

r = δ
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