Limits

Notation.

- \mathbb{N} is the set $\{1, 2, 3, \cdots\}$ of all natural numbers
- $\circ~{\rm I\!R}$ is the set of all real numbers
- $\circ~\forall$ is read "for all"
- $\circ~\exists$ is read "there exists"
- ∈ is read "element of"
- ∘ \notin is read "not an element of"
- $\circ \{ A \mid B \}$ is read "the set of all A such that B"
- If S is a set and T is a subset of S, then $S \setminus T$ is $\{x \in S \mid x \notin T\}$, the set S with the elements of T removed.
- if n is a natural number, \mathbb{R}^n is used for both the set of n-component vectors $\langle x_1, x_2, \dots, x_n \rangle$ and the set of points (x_1, x_2, \dots, x_n) with n-coordinates.
- If S and T are sets, then $f: S \to T$ means that f is a function which assigns to each element of S an element of T.
- $\circ \ [a,b] = \left\{ \begin{array}{l} x \in \mathbb{R} \ \big| \ a \le x \le b \end{array} \right\} \\ (a,b] = \left\{ \begin{array}{l} x \in \mathbb{R} \ \big| \ a < x \le b \end{array} \right\} \\ [a,b] = \left\{ \begin{array}{l} x \in \mathbb{R} \ \big| \ a \le x < b \end{array} \right\} \\ (a,b) = \left\{ \begin{array}{l} x \in \mathbb{R} \ \big| \ a \le x < b \end{array} \right\} \\ (a,b) = \left\{ \begin{array}{l} x \in \mathbb{R} \ \big| \ a < x < b \end{array} \right\} \end{array}$

Roughly speaking, $\lim_{\vec{x}\to\vec{a}} \vec{f}(\vec{x}) = \vec{L}$ means that $\vec{f}(\vec{x})$ approachs \vec{L} as \vec{x} approachs \vec{a} . Here is the precise definition of limit, and a couple of related definitions.

Definition 1 Let $m, n \in \mathbb{N}$.

(a) Let $\vec{a} \in \mathbb{R}^n$ and $\vec{L} \in \mathbb{R}^m$, and let $\vec{f} : \mathbb{R}^n \setminus {\{\vec{a}\}} \to \mathbb{R}^m$. Then $\lim_{\vec{x} \to \vec{a}} \vec{f}(\vec{x}) = \vec{L}$ if

$$\forall \, \varepsilon > 0 \;\; \exists \, \delta > 0 \;\; \text{such that} \;\; \left| \vec{f}(\vec{x}) - \vec{L} \right| < \varepsilon \; \text{whenever} \; 0 < |\vec{x} - \vec{a}| < \delta$$

(b) Let $\vec{f} : \mathbb{R}^n \to \mathbb{R}^m$. Then f is continuous at $\vec{a} \in \mathbb{R}^n$ if $\lim_{\vec{x} \to \vec{a}} \vec{f}(\vec{x}) = \vec{f}(\vec{a})$ and \vec{f} is continuous on \mathbb{R}^n if it is continuous at every $\vec{a} \in \mathbb{R}^n$.

Remark 2

(a) Here is what that definition of limit says. Suppose you have a magic microscope whose magnification can be set as high as you like. Suppose that when the magnification is set to $\frac{1}{\varepsilon}$, you can only see those points whose distance from \vec{L} is less than ε . The definition

says that no matter how high you set the magnification, (i.e. no matter how small you set $\varepsilon > 0$), you will be able to see $\vec{f}(\vec{x})$ whenever \vec{x} is close enough to \vec{a} (if the distance from \vec{x} to \vec{a} is less than δ , then you will certainly see $\vec{f}(\vec{x})$).

(b) Definition 1.a, of $\lim_{\vec{x}\to\vec{a}}\vec{f}(\vec{x})$, is set up so that the function $\vec{f}(\vec{x})$ is never evaluated at $\vec{x} = \vec{a}$. Indeed $\vec{f}(\vec{x})$ need not even be defined at $\vec{x} = \vec{a}$. This is exactly what happens in the definition of the derivative $h'(a) = \lim_{x\to a} \frac{h(x) - h(a)}{x - a}$. (In this case $f(x) = \frac{h(x) - h(a)}{x - a}$.)

We'll first do a couple of examples with m = n = 1. We'll do higher dimensional examples later.

Example 3 In Example 2 of the notes "A Little Logic" we saw that the statement

 $\forall \varepsilon > 0 \ \exists \delta > 0$ such that if $|x| < \delta$ then $x^2 < \varepsilon$

is true. Consequently

$$\lim_{x \to 0} x^2 = 0$$

Example 4 In this example, we consider $\lim_{x\to 0} \sin \frac{1}{x}$. So fix any real number L and let

 $\circ \ S(\delta,\varepsilon) \text{ be the statement ``|} \sin \tfrac{1}{x} - L| < \varepsilon \text{ whenever } 0 < |x| < \delta ``,$

• $T(\varepsilon)$ be the statement " $\exists \delta > 0$ such that $S(\delta, \varepsilon)$ " or

$$\exists \delta > 0$$
 such that $|\sin \frac{1}{x} - L| < \varepsilon$ whenever $0 < |x| < \delta$

• U be the statement " $\forall \varepsilon > 0 \ T(\varepsilon)$ " or

$$\forall \varepsilon > 0 \ \exists \delta > 0$$
 such that $|\sin \frac{1}{x} - L| < \varepsilon$ whenever $0 < |x| < \delta$

Then

- Fix any $\varepsilon > 0$ and any $\delta > 0$. The statement $S(\delta, \varepsilon)$ is true if all values of $\sin \frac{1}{x}$, with $0 < |x| < \delta$, lie in the interval $(L \varepsilon, L + \varepsilon)$. As x runs over the interval $(0, \delta)$, (so that, in particular, $0 < |x| < \delta$) $\frac{1}{x}$ covers the set $(\frac{1}{\delta}, \infty)$. This contains many intervals of length 2π and hence many periods of sin. So, as x runs over the interval $(0, \delta)$, $\sin \frac{1}{x}$ covers all of [-1, 1]. So $S(\delta, \varepsilon)$ is true if and only if the interval [-1, 1] is contained in the interval $(L \varepsilon, L + \varepsilon)$. In particular, when $\varepsilon < 1$, the interval $(L \varepsilon, L + \varepsilon)$, which has length 2ε , is shorter than [-1, 1] and cannot contain it, so that $S(\delta, \varepsilon)$ is false.
- Because $S(\delta, \varepsilon)$ is false for all $\delta > 0$ when $\varepsilon < 1$, $T(\varepsilon)$ is false for all $\varepsilon < 1$.
- U is false since, as we have just seen, $T(\varepsilon)$ is false for at least one $\varepsilon > 0$. For example $T(\frac{1}{2})$ is false.

In conclusion, $\sin \frac{1}{x}$ has no limit as $x \to 0$.

Theorem 5 Let $n \in \mathbb{N}$, $\vec{a}, \vec{b} \in \mathbb{R}^n$, $F, G \in \mathbb{R}$ and

$$f,g: \mathbb{R}^n \setminus \{\vec{a}\} \to \mathbb{R} \qquad \vec{X}: \mathbb{R}^n \setminus \{\vec{b}\} \to \mathbb{R}^n \setminus \{\vec{a}\} \qquad \gamma: \mathbb{R} \to \mathbb{R}$$

Assume that

$$\lim_{\vec{x}\to\vec{a}} f(\vec{x}) = F \qquad \lim_{\vec{x}\to\vec{a}} g(\vec{x}) = G \qquad \lim_{\vec{y}\to\vec{b}} \vec{X}(\vec{y}) = \vec{a} \qquad \lim_{t\to F} \gamma(t) = \gamma(F) = \Gamma$$

Then

(a)
$$\lim_{\vec{x}\to\vec{a}} \left[f(\vec{x}) + g(\vec{x})\right] = F + G$$

(b)
$$\lim_{\vec{x} \to \vec{a}} f(\vec{x})g(\vec{x}) = FG$$

(c)
$$\lim_{\vec{x}\to\vec{a}}\frac{f(\vec{x})}{g(\vec{x})} = \frac{F}{G} \qquad if \ G \neq 0$$

(d)
$$\lim_{\vec{y} \to \vec{b}} f\left(\vec{X}(\vec{y})\right) = F$$

(e)
$$\lim_{\vec{x} \to \vec{a}} \gamma(f(\vec{x})) = \Gamma$$

Proof: Note that the ε and δ in " $\forall \varepsilon > 0 \exists \delta > 0$ such that $S(\delta, \varepsilon)$ " are dummy variables, just as x is a dummy variable in $\int_0^1 x \, dx$. You may replace ε and δ by whatever symbols you like. The hypotheses of this theorem say that

$$\forall \varepsilon_f > 0 \; \exists \delta_f > 0 \; \text{ such that } |f(\vec{x}) - F| < \varepsilon_f \text{ whenever } 0 < |\vec{x} - \vec{a}| < \delta_f \tag{1}$$

$$\forall \varepsilon_g > 0 \ \exists \delta_g > 0 \ \text{such that } |g(\vec{x}) - G| < \varepsilon_g \text{ whenever } 0 < |\vec{x} - \vec{a}| < \delta_g$$
 (2)

$$\forall \varepsilon_X > 0 \; \exists \delta_X > 0 \; \text{ such that } |X(\vec{y}) - \vec{a}| < \varepsilon_X \text{ whenever } 0 < |\vec{y} - \vec{b}| < \delta_X \tag{3}$$

$$\forall \varepsilon_{\gamma} > 0 \; \exists \delta_{\gamma} > 0 \; \text{ such that } |\gamma(t) - \Gamma| < \varepsilon_{\gamma} \text{ whenever } 0 < |t - F| < \delta_{\gamma}$$

$$\tag{4}$$

(a) We are to prove that

$$\forall \varepsilon > 0 \; \exists \delta > 0 \; \text{ such that } |f(\vec{x}) + g(\vec{x}) - F - G| < \varepsilon \text{ whenever } 0 < |\vec{x} - \vec{a}| < \delta$$

So pick any $\varepsilon > 0$. We must prove that there is a $\delta > 0$ such that

$$|f(\vec{x}) + g(\vec{x}) - F - G| < \varepsilon$$
 whenever $0 < |\vec{x} - \vec{a}| < \delta$

Observe that

$$|f(\vec{x}) + g(\vec{x}) - F - G| = \left| [f(\vec{x}) - F] + [g(\vec{x}) - G] \right| \le |f(\vec{x}) - F| + |g(\vec{x}) - G|$$

© Joel Feldman. 2011. All rights reserved.

Set
$$\varepsilon_1 = \frac{\varepsilon}{2}$$
 and $\varepsilon_2 = \frac{\varepsilon}{2}$. By (1) with $\varepsilon_f = \varepsilon_1$ and (2) with $\varepsilon_g = \varepsilon_2$,
 $\exists \delta_1 > 0$ such that $|f(\vec{x}) - F| < \varepsilon_1$ whenever $0 < |\vec{x} - \vec{a}| < \delta_1$
 $\exists \delta_2 > 0$ such that $|g(\vec{x}) - G| < \varepsilon_2$ whenever $0 < |\vec{x} - \vec{a}| < \delta_2$

Choose $\delta = \min \{\delta_1, \delta_2\}$. Then whenever $0 < |\vec{x} - \vec{a}| < \delta$ we also have $0 < |\vec{x} - \vec{a}| < \delta_1$ and $0 < |\vec{x} - \vec{a}| < \delta_2$ so that

$$|f(\vec{x}) + g(\vec{x}) - F - G| \le |f(\vec{x}) - F| + |g(\vec{x}) - G| < \varepsilon_1 + \varepsilon_2 = \varepsilon_1$$

(b) is a homework assignment.

(c) We are to prove that

$$\forall \varepsilon > 0 \;\; \exists \, \delta > 0 \;\; \text{such that} \; \left| \frac{f(\vec{x})}{g(\vec{x})} - \frac{F}{G} \right| < \varepsilon \; \text{whenever} \; 0 < |\vec{x} - \vec{a}| < \delta$$

So pick any $\varepsilon > 0$. We must prove that there is a $\delta > 0$ such that

$$\left|\frac{f(\vec{x})}{g(\vec{x})} - \frac{F}{G}\right| < \varepsilon$$
 whenever $0 < |\vec{x} - \vec{a}| < \delta$

Set $\varepsilon_1 = \frac{1}{6}|G|\varepsilon$ and $\varepsilon_2 = \frac{G^2}{6(|F|+1)}\varepsilon$. By (1) with $\varepsilon_f = \varepsilon_1$, (2) with $\varepsilon_g = \varepsilon_2$ and (2) with $\varepsilon_g = \frac{1}{2}|G|$,

$$\exists \delta_1 > 0 \text{ such that } |f(\vec{x}) - F| < \varepsilon_1 \text{ whenever } 0 < |\vec{x} - \vec{a}| < \delta_1$$

$$\exists \delta_2 > 0 \text{ such that } |g(\vec{x}) - G| < \varepsilon_2 \text{ whenever } 0 < |\vec{x} - \vec{a}| < \delta_2$$

$$\exists \delta_3 > 0 \text{ such that } |g(\vec{x}) - G| < \frac{1}{2}|G| \text{ whenever } 0 < |\vec{x} - \vec{a}| < \delta_3$$

Choose $\delta = \min \{\delta_1, \delta_2, \delta_3\}$. Then whenever $0 < |\vec{x} - \vec{a}| < \delta$ we also have $0 < |\vec{x} - \vec{a}| < \delta_1$ and $0 < |\vec{x} - \vec{a}| < \delta_2$ and $0 < |\vec{x} - \vec{a}| < \delta_3$ so that

$$\begin{split} \left| \frac{f(\vec{x})}{g(\vec{x})} - \frac{F}{G} \right| &= \frac{|f(\vec{x})G - Fg(\vec{x})|}{|g(\vec{x})G|} = \frac{|\{f(\vec{x}) - F\}G - F\{g(\vec{x}) - G\}|}{|g(\vec{x})G|} \\ &\leq \frac{|f(\vec{x}) - F| |G| + |F| |g(\vec{x}) - G|}{|g(\vec{x})| |G|} \\ &\leq \frac{\varepsilon_1 |G| + |F| \varepsilon_2}{\frac{1}{2}|G| |G|} \quad \text{since } |g(\vec{x})| = \left|g(\vec{x}) - G + G\right| \ge |G| - |g(\vec{x}) - G| \ge \frac{1}{2}|G| \\ &= \frac{1}{6}|G|\varepsilon \frac{|G|}{G^2/2} + \frac{|F|}{G^2/2} \frac{G^2}{6(|F|+1)}\varepsilon = \frac{\varepsilon}{3} + \frac{1}{3} \frac{|F|}{|F|+1}\varepsilon \\ &< \varepsilon \end{split}$$

(d) We are to prove that

$$\forall \, \varepsilon > 0 \ \exists \, \delta > 0 \ \text{ such that } \left| f \left(\vec{X}(\vec{y}) \right) - F \right| < \varepsilon \text{ whenever } 0 < |\vec{y} - \vec{b}| < \delta$$

So pick any $\varepsilon > 0$. We must prove that there is a $\delta > 0$ such that

$$\left|f\left(\vec{X}(\vec{y})\right) - F\right| < \varepsilon$$
 whenever $0 < |\vec{y} - \vec{b}| < \delta$

By (1) with $\varepsilon_f = \varepsilon$

$$\exists \delta_f > 0$$
 such that $|f(\vec{x}) - F| < \varepsilon$ whenever $0 < |\vec{x} - \vec{a}| < \delta_f$

and (3) with $\varepsilon_X = \delta_f$,

$$\exists \delta_X > 0$$
 such that $|\vec{X}(\vec{y}) - \vec{a}| < \delta_f$ whenever $0 < |\vec{y} - \vec{b}| < \delta_X$

Choosing $\delta = \delta_X$, we have

$$0 < |\vec{y} - \vec{b}| < \delta = \delta_X \implies 0 < |\vec{X}(\vec{y}) - \vec{a}| < \delta_f \implies \left| f\left(\vec{X}(\vec{y})\right) - F \right| < \varepsilon$$

(e) has essentially the same proof as part (d). We are to prove that

$$\forall \varepsilon > 0 \; \exists \delta > 0 \; \text{ such that } \left| \gamma (f(\vec{x})) - \Gamma \right| < \varepsilon \text{ whenever } 0 < |\vec{x} - \vec{a}| < \delta$$

So pick any $\varepsilon > 0$. We must prove that there is a $\delta > 0$ such that

$$\left|\gamma(f(\vec{x})) - \Gamma\right| < \varepsilon$$
 whenever $0 < |\vec{x} - \vec{a}| < \delta$

By (4) with $\varepsilon_{\gamma} = \varepsilon$ and the hypothesis that $\gamma(F) = \Gamma$

$$\exists \delta_{\gamma} > 0$$
 such that $|\gamma(t) - \Gamma| < \varepsilon$ whenever $|t - F| < \delta_{\gamma}$

By (1) with $\varepsilon_f = \delta_{\gamma}$

$$\exists \delta_f > 0 \text{ such that } |f(\vec{x}) - F| < \delta_{\gamma} \text{ whenever } 0 < |\vec{x} - \vec{a}| < \delta_f$$

Choosing $\delta = \delta_f$, we have

$$0 < |\vec{x} - \vec{a}| < \delta = \delta_f \implies |f(\vec{x}) - F| < \delta_\gamma \implies |\gamma(f(\vec{x})) - \Gamma| < \varepsilon$$

© Joel Feldman. 2011. All rights reserved. Se

Example 6 There is a typical application of Theorem 5. Here " $\stackrel{a}{=}$ " means that Theorem 5.a justifies that equality.

$$\lim_{(x,y)\to(2,3)} (x+\sin y) \stackrel{a}{=} \lim_{(x,y)\to(2,3)} x + \lim_{(x,y)\to(2,3)} \sin y$$

$$\stackrel{e}{=} \lim_{(x,y)\to(2,3)} x + \sin\left(\lim_{(x,y)\to(2,3)} y\right)$$

$$= 2 + \sin 3$$

$$\lim_{(x,y)\to(2,3)} (x^2y^2 + 1) \stackrel{a}{=} \lim_{(x,y)\to(2,3)} x^2y^2 + \lim_{(x,y)\to(2,3)} 1$$

$$\stackrel{b}{=} \left(\lim_{(x,y)\to(2,3)} x\right) \left(\lim_{(x,y)\to(2,3)} x\right) \left(\lim_{(x,y)\to(2,3)} y\right) \left(\lim_{(x,y)\to(2,3)} y\right) + 1$$

$$= 2^2 3^2 + 1$$

$$\lim_{(x,y)\to(2,3)} \frac{x + \sin y}{x^2y^2 + 1} \stackrel{c}{=} \frac{\lim_{(x,y)\to(2,3)} (x + \sin y)}{\lim_{(x,y)\to(2,3)} (x^2y^2 + 1)}$$

$$= \frac{2 + \sin 3}{37}$$

Here we have used that $\sin x$ is a continuous function. In this course we shall assume that we already know that "standard single variable calculus functions" like $\sin x$, $\cos x$, e^x and so on are continuous.

Example 7 As a second example, we consider $\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^2+y^2}$. In this example, both the numerator, x^2y , and the denominator $x^2 + y^2$ tend to zero as (x, y) approaches (0, 0), so we have to be more careful. A good way to see the behaviour of a function f(x, y) when (x, y) is close to (0, 0) is to switch to the polar coordinates r, θ using y = (x, y)

$$x = r \cos \theta$$

$$y = r \sin \theta$$

Recall that the definition of
$$\lim_{(x,y)\to(0,0)} f(x,y) = L$$
 is

$$\forall \varepsilon > 0 \; \exists \delta > 0 \; \text{ such that } \left| f(x, y) - L \right| < \varepsilon \text{ whenever } 0 < |(x, y)| < \delta$$
 (5)

The condition $0 < |(x, y)| < \delta$ says that $0 < r < \delta$ and no restriction on θ . So substituting $x = r \cos \theta$, $y = r \sin \theta$ into (5) gives

 $\forall \varepsilon > 0 \ \exists \delta > 0 \ \text{such that } \left| f(r \cos \theta, r \sin \theta) - L \right| < \varepsilon \text{ whenever } 0 < r < \delta, \ 0 \le \theta \le 2\pi$ (6) For our current example

$$\frac{x^2y}{x^2+y^2} = \frac{(r\cos\theta)^2(r\sin\theta)}{r^2} = r\cos^2\theta\sin\theta$$

As $\left| r \cos^2 \theta \sin \theta \right| \le r \to 0$ when $r \to 0$, we have

$$\lim_{(x,y)\to(0,0)}\frac{x^2y}{x^2+y^2} = 0$$

September 24, 2011

Example 8 As a third example, we consider $\lim_{(x,y)\to(0,0)} \frac{x^2-y^2}{x^2+y^2}$. Once again, the best way to see the behaviour of $\frac{x^2-y^2}{x^2+y^2}$ for (x,y) close to (0,0) is to switch to polar coordinates.

$$\frac{x^2 - y^2}{x^2 + y^2} = \frac{(r\cos\theta)^2 - (r\sin\theta)^2}{r^2} = \cos^2\theta - \sin^2\theta = \cos(2\theta)$$

No matter how small you make $\delta > 0$, as (x, y) runs over those points with $r = |(x, y)| < \delta$, $\frac{x^2 - y^2}{x^2 + y^2}$ takes all values in the interval [-1, 1]. So $\lim_{(x,y)\to(0,0)} \frac{x^2 - y^2}{x^2 + y^2}$ does not exist.

$$f = \cos(180^{\circ}) = -1$$

$$f = \cos(135^{\circ}) = -1/\sqrt{2}$$

$$f = \cos(90^{\circ}) = 0$$

$$f = \cos(60^{\circ}) = 1/2$$

$$f = \cos(30^{\circ}) = \sqrt{3}/2$$

$$f = \cos(0) = 1$$