Limits

Notation.
IN is the set {1,2,3, -} of all natural numbers
IR is the set of all real numbers

Y is read “for all”

3 is read “there exists”

@)

o

o

@)

€ is read “element of”

@)

o

¢ is read “not an element of”
{ A ‘ B } is read “the set of all A such that B”
IfSisasetandTisasubsetofS,thenS\Tis{xeS ‘ asgéT},thesetSWith

the elements of T" removed.

o

@)

o if m is a natural number, IR" is used for both the set of n—component vectors

(x1,29, -, x,) and the set of points (x1,x2," - -, x,) with n—coordinates.

@)

If S and T are sets, then f : S — T means that f is a function which assigns to each
element of S an element of T'.
[a,b]:{xE]R‘agatgb}
(a,b]:{azEIR‘a<x§b}
[a,b):{azEIR}an<b}
(a,b)={zeR|a<z<b}

o

Roughly speaking, lim f (Z) = L means that f (Z) approachs L as ¥ approachs @. Here is
Tr—ra

the precise definition of limit, and a couple of related definitions.

Definition 1 Let m,n € IN.

(a) Let @ € R™ and L € R™, and let f: IR"\ {@} — R™. Then lim f(7) = L if

—

Ve>0 3§ >0 such that ‘f(f)—f/‘<5Whenever0<|f:—c_i\<5

continous on IR™ if it is continuous at every @ € IR".

Remark 2

(a) Here is what that definition of limit says. Suppose you have a magic microscope whose
magnification can be set as high as you like. Suppose that when the magnification is set

to %, you can only see those points whose distance from L is less than e. The definition
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says that no matter how high you set the magnification, (i.e. no matter how small you set

e > 0), you will be able to see f(&) whenever 7 is close enough to @ (if the distance from

Z to d is less than 4, then you will certainly see f(Z)).

— —

(b) Definition 1.a, of lim f(Z), is set up so that the function f(Z) is never evaluated at
Tr—ra

—

Z = d. Indeed f(Z) need not even be defined at # = a. This is exactly what happens in
the definition of the derivative h'(a) = lim % (In this case f(z) = W)
r—a
We'll first do a couple of examples with m = n = 1. We’ll do higher dimensional
examples later.

Example 3 In Example 2 of the notes “A Little Logic” we saw that the statement
Ve >0 36 >0 such that if |z| < d then 2 < ¢

is true. Consequently

lim 22 = 0
x—0

Example 4 In this example, we consider lin%) sin % So fix any real number L and let
Tr—r

o S(d,) be the statement “|sinl — L| < & whenever 0 < |z| < 67,
o T'(e) be the statement “39 > 0 such that S(d,¢)” or

36 >0 such that [sind — L| < & whenever 0 < |z| < §
o U be the statement “Ve >0 T(g)” or
Ve >0 36 >0 such that |sind — L| <& whenever 0 < |z]| < §

Then
o Fix any € > 0 and any 6 > 0. The statement S(J,¢) is true if all values of sin 1, with
0 < |z| < 6, lie in the interval (L — ¢, L + ¢). As z runs over the interval (0,9), (so

that, in particular, 0 < |z| < §) 2 covers the set (%, 00). This contains many intervals
1

of length 27 and hence many periods of sin. So, as 2 runs over the interval (0, ), sin -
covers all of [—1,1]. So S(4,¢) is true if and only if the interval [—1, 1] is contained in
the interval (L —e, L +¢). In particular, when € < 1, the interval (L —e, L +¢), which
has length 2¢, is shorter than [—1,1] and cannot contain it, so that S(d,¢) is false.

o Because S(0, ¢)is false for all 6 > 0 when € < 1, T'(¢) is false for all ¢ < 1.

o U is false since, as we have just seen, T'(¢) is false for at least one € > 0. For example

T(%) is false.

In conclusion, sin% has no limit as z — 0.
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Theorem 5 Letn € IN, 6,56 R", F,G € IR and
frg:R*"\{a} > R X:R"\{d} > R"\{@@ ~+:R—-R
Assume that

lim f(z) = F lim ¢(Z%) = G lim X (y) =a lim v(t) =~(F)=T
Tr—a

I—d G—b t—F
Then

(a) lim [£(@) +9(8)] = F+G

(b) lim f(%)g(7) = FG

(c) lim 88 = L if G #0

(d) lim f(X(7)) = F

y—b
(e) lim (f(#) =T

Proof: Note that thee and § in “Ve >0 30 > 0 such that S(d,¢)” are dummy variables,
just as x is a dummy variable in fol xdzr. You may replace € and § by whatever symbols

you like. The hypotheses of this theorem say that

1
2

Ver >0 36¢ >0 such that |f(Z) — F| < e whenever 0 < |Z — d| < 05 (1)
Ve, >0 3, >0 such that |g(Z) — G| < e, whenever 0 < |7 —d| < J, (2)
Vex >0 36x >0 such that |X () — | < ex whenever 0 < |7 —b| < dx (3)

) (4)

Ve, >0 36, >0 such that |y(t) — I'| < e, whenever 0 < |t — F| < d, 4

(a) We are to prove that
Ve>0 3§ >0 such that |f(Z) + g(¥) — F — G| < € whenever 0 < |Z —ad| < ¢
So pick any € > 0. We must prove that there is a § > 0 such that
|f(&) + g(¥) — F — G| < e whenever 0 < | —a| <§
Observe that
f(@) +9(2) = F = G| = [[f(@) = F] + [9(&) - G]| < |f(@) - F| +9(z) - G
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Set €1 = § and g2 = 5. By (1) with e = £; and (2) with ¢, = &3,

301 > 0 such that |f(Z) — F| < €1 whenever 0 < |¥ —d| < 1
362 > 0 such that |g(Z) — G| < 5 whenever 0 < |Z — d| < Jy

Choose 6 = min {d1,d2}. Then whenever 0 < |Z — d| < § we also have 0 < |Z — @] < &
and 0 < |¥ — d| < d3 so that

1f(@) +9(2) = F =G| < [f(@) = Fl+|9(%) G| <e1+ex=¢

(b) is a homework assignment.

(c) We are to prove that

Ve>0 36>0 suchthat}fgg L| < & whenever 0 < |Z—d| <

So pick any € > 0. We must prove that there is a 6 > 0 such that

‘chg)) - %‘ < & whenever 0 < | —d| < 0
Set &1 = §|Gle and g3 = 6(|F|2+1)5 By (1) with e; = 1, (2) with £, = &5 and (2) with

ey = 3lGl,
3601 > 0 such that |f(Z) — F| < 1 whenever 0 < |Z —d| < &,
J02 > 0 such that |g(Z) — G| < e2 whenever 0 < |¥ — d| < d
363 > 0 such that |g(Z) — G| < |G| whenever 0 < |T — @| < d3

Choose § = min {41, 2,83 }. Then whenever 0 < |Z — a@| < § we also have 0 < |Z — a@| < &;
and 0 < |Z — d| < d2 and 0 < |& — d| < &3 so that

@) E’ _ @G - Fg(@)| _ [{f(@) - F}G - F{g() - G}|

9(z) G| 19(Z)G] a 19(Z)G]
|f(Z) — F||G| + |F||g(Z) — G]
- 19(Z)] |G|
e1 |G|+ |F . o I o
< lelr e e lo@) = 9(@) - G + G| 2 161 l9(@) — G| = 2]
351Gl G|
G F 2 € F
= 5|G|<€ cl:2/|2 + G|‘2/|26(|I§|+1) §+%|1*LljrfS
<e€

(d) We are to prove that

Ve>0 36>0 suchthat‘f( 7)) — F‘<5Whenever0<|y—b|<5
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So pick any € > 0. We must prove that there is a 6 > 0 such that
}f()?(g)) — F| < & whenever 0 < 7 —bl <6
By (1) with ey =¢
367 > 0 such that |f(Z) — F| < € whenever 0 < |7 —d] < dy
and (3) with ex = dy,
36x >0 such that | X (7) — @| < 0 whenever 0 < |§—b| < dx
Choosing § = dx, we have

0<|F—bl<d=06x = 0<|X(§) —d <é = |f(X@)—-F|<e

(e) has essentially the same proof as part (d). We are to prove that
Ve>0 36 >0 such that }'y(f(f)) —T'| <& whenever 0 < |Z—a| <§
So pick any € > 0. We must prove that there is a § > 0 such that
[7(f(®)) — T'| < & whenever 0 < | —a| <4
By (4) with e, = ¢ and the hypothesis that v(F') =T
39, > 0 such that |y(t) — I'| < e whenever |t — F| < d,
By (1) with ey =4,
37 > 0 such that |f(Z) — F| < 6y whenever 0 < |Z —d| < 6y
Choosing d = 0, we have

O<|f—dl<d=6 = |f(@)—F|<ds, = |y(f(@)-T|<e
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Example 6 There is a typical application of Theorem 5. Here “ = ” means that Theorem

5.a justifies that equality.

lim siny

lim (:(: + sin y) = lim o+
(z,y)—(2,3) (z,y)—(2,3)

(z,y)—(2,3)
= lim =z +sin ( lim y)
(z,y)—(2,3) (z,y)—(2,3)
=2+sin3
lim (x2y2 + 1) = lim 2%*?+ lim 1
(z,y)—(2,3) (z,y)—(2,3) (z,y)—(2,3)
L ( lim x) ( lim x) ( lim y) ( lim y) +1
(z,y)—(2,3) (z,y)—(2,3) (z,y)—(2,3) (z,y)—(2,3)
=2%3"+1

im x + siny c lim (g ) (2,3) (T + siny)
(z,y)—(2,3) 22y + 1 lim(x7y)_>(273)(a:2y2 + 1)
_ 2+sin3
T
Here we have used that sin z is a continuous function. In this course we shall assume that

we already know that “standard single variable calculus functions” like sin z, cosx, e* and

SO on are continuous.

Example 7 As a second example, we consider ( %1111( )mzszyyz. In this example, both
z,y)—(0,0

the numerator, 2y, and the denominator 22 + y? tend to zero as (z,y) approachs (0,0),

so we have to be more careful. A good way to see the behaviour of a function f(z,y) when

(x,y) is close to (0,0) is to switch to the polar coordinates r, # using y (z,)
x =rcosf r
y=rsinf 0
Recall that the definition of  lim  f(z,y) = L is !
(z,y)—(0,0)
Ve >0 30 >0 such that |f(z,y) — L| < e whenever 0 < |(z,y)| < & (5)

The condition 0 < |(x,y)| < J says that 0 < r < § and no restriction on 6. So substituting

x =rcosf, y=rsinf into (5) gives
Ve >0 30 >0 such that | f(rcos6,rsing)—L| < e whenever 0 <7 <4, 0 < <27 (6)

For our current example

2 9 2 . 9 .
T = (r cos )Tz(r Sn0) — rcos?fsinf
As ‘7‘0082981119‘ <r — 0 when r — 0, we have
(2,)—(0,0) T Y7
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Example 8 As a third example, we consider ( %1111( : % Once again, the best way
z,y)—(0,0

to see the behaviour of % for (x,y) close to (0,0) is to switch to polar coordinates.

2 2 2 i )2 .
iz_i_Zz — (recef) Tz(r SO — cos? f — sin® 0 = cos(20)

No matter how small you make § > 0, as (z, y) runs over those points with r = |(z,y)| < §,
2 2 2 2

Y- takes all values in the interval [—-1,1]. So  lim %% does not exist.

vy (2,y)—(0,0) * Y

f=cos(180°)=-1
f=cos(135°)=—1/+/2
f=cos(90°)=0

f=cos(60°)=1/2
f=cos(30°)=3/2
f=cos(0)=1
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