## Limits

## Notation.

- $\mathbb{N}$ is the set $\{1,2,3, \cdots\}$ of all natural numbers
- $\mathbb{R}$ is the set of all real numbers
- $\forall$ is read "for all"
- $\exists$ is read "there exists"
$\circ \in$ is read "element of"
- $\notin$ is read "not an element of"
- $\{A \mid B\}$ is read "the set of all $A$ such that $B$ "
- If $S$ is a set and $T$ is a subset of $S$, then $S \backslash T$ is $\{x \in S \mid x \notin T\}$, the set $S$ with the elements of $T$ removed.
- if $n$ is a natural number, $\mathbb{R}^{n}$ is used for both the set of $n$-component vectors $\left\langle x_{1}, x_{2}, \cdots, x_{n}\right\rangle$ and the set of points $\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ with $n$-coordinates.
- If $S$ and $T$ are sets, then $f: S \rightarrow T$ means that $f$ is a function which assigns to each element of $S$ an element of $T$.
- $[a, b]=\{x \in \mathbb{R} \mid a \leq x \leq b\}$
$(a, b]=\{x \in \mathbb{R} \mid a<x \leq b\}$
$[a, b)=\{x \in \mathbb{R} \mid a \leq x<b\}$ $(a, b)=\{x \in \mathbb{R} \mid a<x<b\}$

Roughly speaking, $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{L}$ means that $\vec{f}(\vec{x})$ approachs $\vec{L}$ as $\vec{x}$ approachs $\vec{a}$. Here is the precise definition of limit, and a couple of related definitions.

Definition 1 Let $m, n \in \mathbb{N}$.
(a) Let $\vec{a} \in \mathbb{R}^{n}$ and $\vec{L} \in \mathbb{R}^{m}$, and let $\vec{f}: \mathbb{R}^{n} \backslash\{\vec{a}\} \rightarrow \mathbb{R}^{m}$. Then $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{L}$ if

$$
\forall \varepsilon>0 \quad \exists \delta>0 \text { such that }|\vec{f}(\vec{x})-\vec{L}|<\varepsilon \text { whenever } 0<|\vec{x}-\vec{a}|<\delta
$$

(b) Let $\vec{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. Then $f$ is continuous at $\vec{a} \in \mathbb{R}^{n}$ if $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{f}(\vec{a})$ and $\vec{f}$ is continous on $\mathbb{R}^{n}$ if it is continuous at every $\vec{a} \in \mathbb{R}^{n}$.

## Remark 2

(a) Here is what that definition of limit says. Suppose you have a magic microscope whose magnification can be set as high as you like. Suppose that when the magnification is set to $\frac{1}{\varepsilon}$, you can only see those points whose distance from $\vec{L}$ is less than $\varepsilon$. The definition
says that no matter how high you set the magnification, (i.e. no matter how small you set $\varepsilon>0$ ), you will be able to see $\vec{f}(\vec{x})$ whenever $\vec{x}$ is close enough to $\vec{a}$ (if the distance from $\vec{x}$ to $\vec{a}$ is less than $\delta$, then you will certainly see $\vec{f}(\vec{x}))$.
(b) Definition 1.a, of $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})$, is set up so that the function $\vec{f}(\vec{x})$ is never evaluated at $\vec{x}=\vec{a}$. Indeed $\vec{f}(\vec{x})$ need not even be defined at $\vec{x}=\vec{a}$. This is exactly what happens in the definition of the derivative $h^{\prime}(a)=\lim _{x \rightarrow a} \frac{h(x)-h(a)}{x-a}$. (In this case $f(x)=\frac{h(x)-h(a)}{x-a}$.)

We'll first do a couple of examples with $m=n=1$. We'll do higher dimensional examples later.

Example 3 In Example 2 of the notes "A Little Logic" we saw that the statement

$$
\forall \varepsilon>0 \quad \exists \delta>0 \text { such that } \quad \text { if }|x|<\delta \text { then } x^{2}<\varepsilon
$$

is true. Consequently

$$
\lim _{x \rightarrow 0} x^{2}=0
$$

Example 4 In this example, we consider $\lim _{x \rightarrow 0} \sin \frac{1}{x}$. So fix any real number $L$ and let - $S(\delta, \varepsilon)$ be the statement " $\left.\sin \frac{1}{x}-L \right\rvert\,<\varepsilon$ whenever $0<|x|<\delta$ ", - $T(\varepsilon)$ be the statement " $\exists \delta>0$ such that $S(\delta, \varepsilon)$ " or

$$
\exists \delta>0 \text { such that }\left|\sin \frac{1}{x}-L\right|<\varepsilon \text { whenever } 0<|x|<\delta
$$

- $U$ be the statement " $\forall \varepsilon>0 T(\varepsilon)$ " or

$$
\forall \varepsilon>0 \quad \exists \delta>0 \text { such that }\left|\sin \frac{1}{x}-L\right|<\varepsilon \text { whenever } 0<|x|<\delta
$$

Then

- Fix any $\varepsilon>0$ and any $\delta>0$. The statement $S(\delta, \varepsilon)$ is true if all values of $\sin \frac{1}{x}$, with $0<|x|<\delta$, lie in the interval $(L-\varepsilon, L+\varepsilon)$. As $x$ runs over the interval $(0, \delta)$, (so that, in particular, $0<|x|<\delta) \frac{1}{x}$ covers the set $\left(\frac{1}{\delta}, \infty\right)$. This contains many intervals of length $2 \pi$ and hence many periods of $\sin$. So, as $x$ runs over the interval $(0, \delta)$, $\sin \frac{1}{x}$ covers all of $[-1,1]$. So $S(\delta, \varepsilon)$ is true if and only if the interval $[-1,1]$ is contained in the interval $(L-\varepsilon, L+\varepsilon)$. In particular, when $\varepsilon<1$, the interval $(L-\varepsilon, L+\varepsilon)$, which has length $2 \varepsilon$, is shorter than $[-1,1]$ and cannot contain it, so that $S(\delta, \varepsilon)$ is false.
- Because $S(\delta, \varepsilon)$ is false for all $\delta>0$ when $\varepsilon<1, T(\varepsilon)$ is false for all $\varepsilon<1$.
- $U$ is false since, as we have just seen, $T(\varepsilon)$ is false for at least one $\varepsilon>0$. For example $T\left(\frac{1}{2}\right)$ is false.
In conclusion, $\sin \frac{1}{x}$ has no limit as $x \rightarrow 0$.

Theorem 5 Let $n \in \mathbb{N}, \vec{a}, \vec{b} \in \mathbb{R}^{n}, F, G \in \mathbb{R}$ and

$$
f, g: \mathbb{R}^{n} \backslash\{\vec{a}\} \rightarrow \mathbb{R} \quad \vec{X}: \mathbb{R}^{n} \backslash\{\vec{b}\} \rightarrow \mathbb{R}^{n} \backslash\{\vec{a}\} \quad \gamma: \mathbb{R} \rightarrow \mathbb{R}
$$

Assume that

$$
\lim _{\vec{x} \rightarrow \vec{a}} f(\vec{x})=F \quad \lim _{\vec{x} \rightarrow \vec{a}} g(\vec{x})=G \quad \lim _{\vec{y} \rightarrow \vec{b}} \vec{X}(\vec{y})=\vec{a} \quad \lim _{t \rightarrow F} \gamma(t)=\gamma(F)=\Gamma
$$

Then
(a) $\quad \lim _{\vec{x} \rightarrow \vec{a}}[f(\vec{x})+g(\vec{x})]=F+G$
(b) $\quad \lim _{\vec{x} \rightarrow \vec{a}} f(\vec{x}) g(\vec{x})=F G$
(c) $\quad \lim _{\vec{x} \rightarrow \vec{a}} \frac{f(\vec{x})}{g(\vec{x})}=\frac{F}{G} \quad$ if $G \neq 0$
(d) $\quad \lim _{\vec{y} \rightarrow \vec{b}} f(\vec{X}(\vec{y}))=F$
(e) $\quad \lim _{\vec{x} \rightarrow \vec{a}} \gamma(f(\vec{x}))=\Gamma$

Proof: Note that the $\varepsilon$ and $\delta$ in " $\forall \varepsilon>0 \exists \delta>0$ such that $S(\delta, \varepsilon)$ " are dummy variables, just as $x$ is a dummy variable in $\int_{0}^{1} x d x$. You may replace $\varepsilon$ and $\delta$ by whatever symbols you like. The hypotheses of this theorem say that

$$
\begin{align*}
& \forall \varepsilon_{f}>0 \quad \exists \delta_{f}>0 \text { such that }|f(\vec{x})-F|<\varepsilon_{f} \text { whenever } 0<|\vec{x}-\vec{a}|<\delta_{f}  \tag{1}\\
& \forall \varepsilon_{g}>0 \quad \exists \delta_{g}>0 \text { such that }|g(\vec{x})-G|<\varepsilon_{g} \text { whenever } 0<|\vec{x}-\vec{a}|<\delta_{g}  \tag{2}\\
& \forall \varepsilon_{X}>0 \quad \exists \delta_{X}>0 \text { such that }|X(\vec{y})-\vec{a}|<\varepsilon_{X} \text { whenever } 0<|\vec{y}-\vec{b}|<\delta_{X}  \tag{3}\\
& \forall \varepsilon_{\gamma}>0 \quad \exists \delta_{\gamma}>0 \text { such that }|\gamma(t)-\Gamma|<\varepsilon_{\gamma} \text { whenever } 0<|t-F|<\delta_{\gamma} \tag{4}
\end{align*}
$$

(a) We are to prove that

$$
\forall \varepsilon>0 \quad \exists \delta>0 \text { such that }|f(\vec{x})+g(\vec{x})-F-G|<\varepsilon \text { whenever } 0<|\vec{x}-\vec{a}|<\delta
$$

So pick any $\varepsilon>0$. We must prove that there is a $\delta>0$ such that

$$
|f(\vec{x})+g(\vec{x})-F-G|<\varepsilon \text { whenever } 0<|\vec{x}-\vec{a}|<\delta
$$

Observe that

$$
|f(\vec{x})+g(\vec{x})-F-G|=|[f(\vec{x})-F]+[g(\vec{x})-G]| \leq|f(\vec{x})-F|+|g(\vec{x})-G|
$$

Set $\varepsilon_{1}=\frac{\varepsilon}{2}$ and $\varepsilon_{2}=\frac{\varepsilon}{2}$. By (1) with $\varepsilon_{f}=\varepsilon_{1}$ and (2) with $\varepsilon_{g}=\varepsilon_{2}$,

$$
\exists \delta_{1}>0 \text { such that }|f(\vec{x})-F|<\varepsilon_{1} \text { whenever } 0<|\vec{x}-\vec{a}|<\delta_{1}
$$

$$
\exists \delta_{2}>0 \text { such that }|g(\vec{x})-G|<\varepsilon_{2} \text { whenever } 0<|\vec{x}-\vec{a}|<\delta_{2}
$$

Choose $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$. Then whenever $0<|\vec{x}-\vec{a}|<\delta$ we also have $0<|\vec{x}-\vec{a}|<\delta_{1}$ and $0<|\vec{x}-\vec{a}|<\delta_{2}$ so that

$$
|f(\vec{x})+g(\vec{x})-F-G| \leq|f(\vec{x})-F|+|g(\vec{x})-G|<\varepsilon_{1}+\varepsilon_{2}=\varepsilon
$$

(b) is a homework assignment.
(c) We are to prove that

$$
\forall \varepsilon>0 \quad \exists \delta>0 \text { such that }\left|\frac{f(\vec{x})}{g(\vec{x})}-\frac{F}{G}\right|<\varepsilon \text { whenever } 0<|\vec{x}-\vec{a}|<\delta
$$

So pick any $\varepsilon>0$. We must prove that there is a $\delta>0$ such that

$$
\left|\frac{f(\vec{x})}{g(\vec{x})}-\frac{F}{G}\right|<\varepsilon \text { whenever } 0<|\vec{x}-\vec{a}|<\delta
$$

Set $\varepsilon_{1}=\frac{1}{6}|G| \varepsilon$ and $\varepsilon_{2}=\frac{G^{2}}{6(|F|+1)} \varepsilon$. By (1) with $\varepsilon_{f}=\varepsilon_{1}$, (2) with $\varepsilon_{g}=\varepsilon_{2}$ and (2) with $\varepsilon_{g}=\frac{1}{2}|G|$,

$$
\begin{aligned}
& \exists \delta_{1}>0 \text { such that }|f(\vec{x})-F|<\varepsilon_{1} \text { whenever } 0<|\vec{x}-\vec{a}|<\delta_{1} \\
& \exists \delta_{2}>0 \text { such that }|g(\vec{x})-G|<\varepsilon_{2} \text { whenever } 0<|\vec{x}-\vec{a}|<\delta_{2} \\
& \exists \delta_{3}>0 \text { such that }|g(\vec{x})-G|<\frac{1}{2}|G| \text { whenever } 0<|\vec{x}-\vec{a}|<\delta_{3}
\end{aligned}
$$

Choose $\delta=\min \left\{\delta_{1}, \delta_{2}, \delta_{3}\right\}$. Then whenever $0<|\vec{x}-\vec{a}|<\delta$ we also have $0<|\vec{x}-\vec{a}|<\delta_{1}$ and $0<|\vec{x}-\vec{a}|<\delta_{2}$ and $0<|\vec{x}-\vec{a}|<\delta_{3}$ so that

$$
\begin{aligned}
\left|\frac{f(\vec{x})}{g(\vec{x})}-\frac{F}{G}\right| & =\frac{|f(\vec{x}) G-F g(\vec{x})|}{|g(\vec{x}) G|}=\frac{|\{f(\vec{x})-F\} G-F\{g(\vec{x})-G\}|}{|g(\vec{x}) G|} \\
& \leq \frac{|f(\vec{x})-F||G|+|F||g(\vec{x})-G|}{|g(\vec{x})||G|} \\
& \leq \frac{\varepsilon_{1}|G|+|F| \varepsilon_{2}}{\frac{1}{2}|G||G|} \quad \text { since }|g(\vec{x})|=|g(\vec{x})-G+G| \geq|G|-|g(\vec{x})-G| \geq \frac{1}{2}|G| \\
& =\frac{1}{6}|G| \varepsilon \frac{|G|}{G^{2} / 2}+\frac{|F|}{G^{2} / 2} \frac{G^{2}}{6(|F|+1)} \varepsilon=\frac{\varepsilon}{3}+\frac{1}{3} \frac{|F|}{|F|+1} \varepsilon \\
& <\varepsilon
\end{aligned}
$$

(d) We are to prove that

$$
\forall \varepsilon>0 \quad \exists \delta>0 \text { such that }|f(\vec{X}(\vec{y}))-F|<\varepsilon \text { whenever } 0<|\vec{y}-\vec{b}|<\delta
$$

So pick any $\varepsilon>0$. We must prove that there is a $\delta>0$ such that

$$
|f(\vec{X}(\vec{y}))-F|<\varepsilon \text { whenever } 0<|\vec{y}-\vec{b}|<\delta
$$

By (1) with $\varepsilon_{f}=\varepsilon$

$$
\exists \delta_{f}>0 \text { such that }|f(\vec{x})-F|<\varepsilon \text { whenever } 0<|\vec{x}-\vec{a}|<\delta_{f}
$$

and (3) with $\varepsilon_{X}=\delta_{f}$,

$$
\exists \delta_{X}>0 \text { such that }|\vec{X}(\vec{y})-\vec{a}|<\delta_{f} \text { whenever } 0<|\vec{y}-\vec{b}|<\delta_{X}
$$

Choosing $\delta=\delta_{X}$, we have

$$
0<|\vec{y}-\vec{b}|<\delta=\delta_{X} \Longrightarrow 0<|\vec{X}(\vec{y})-\vec{a}|<\delta_{f} \Longrightarrow|f(\vec{X}(\vec{y}))-F|<\varepsilon
$$

(e) has essentially the same proof as part (d). We are to prove that

$$
\forall \varepsilon>0 \quad \exists \delta>0 \text { such that }|\gamma(f(\vec{x}))-\Gamma|<\varepsilon \text { whenever } 0<|\vec{x}-\vec{a}|<\delta
$$

So pick any $\varepsilon>0$. We must prove that there is a $\delta>0$ such that

$$
|\gamma(f(\vec{x}))-\Gamma|<\varepsilon \text { whenever } 0<|\vec{x}-\vec{a}|<\delta
$$

By (4) with $\varepsilon_{\gamma}=\varepsilon$ and the hypothesis that $\gamma(F)=\Gamma$

$$
\exists \delta_{\gamma}>0 \text { such that }|\gamma(t)-\Gamma|<\varepsilon \text { whenever }|t-F|<\delta_{\gamma}
$$

By (1) with $\varepsilon_{f}=\delta_{\gamma}$

$$
\exists \delta_{f}>0 \text { such that }|f(\vec{x})-F|<\delta_{\gamma} \text { whenever } 0<|\vec{x}-\vec{a}|<\delta_{f}
$$

Choosing $\delta=\delta_{f}$, we have

$$
0<|\vec{x}-\vec{a}|<\delta=\delta_{f} \Longrightarrow|f(\vec{x})-F|<\delta_{\gamma} \Longrightarrow|\gamma(f(\vec{x}))-\Gamma|<\varepsilon
$$

Example 6 There is a typical application of Theorem 5. Here " $\stackrel{a}{=}$ means that Theorem 5.a justifies that equality.

$$
\begin{aligned}
\lim _{(x, y) \rightarrow(2,3)}(x+\sin y) & \stackrel{a}{=} \lim _{(x, y) \rightarrow(2,3)} x+\lim _{(x, y) \rightarrow(2,3)} \sin y \\
& \stackrel{e}{=} \lim _{(x, y) \rightarrow(2,3)} x+\sin \left(\lim _{(x, y) \rightarrow(2,3)} y\right) \\
& =2+\sin 3 \\
\lim _{(x, y) \rightarrow(2,3)}\left(x^{2} y^{2}+1\right) & \stackrel{a}{=} \lim _{(x, y) \rightarrow(2,3)} x^{2} y^{2}+\lim _{(x, y) \rightarrow(2,3)} 1 \\
& =\stackrel{b}{=}\left(\lim _{(x, y) \rightarrow(2,3)} x\right)\left(\lim _{(x, y) \rightarrow(2,3)} x\right)\left(\lim _{(x, y) \rightarrow(2,3)} y\right)\left(\lim _{(x, y) \rightarrow(2,3)} y\right)+1 \\
& =2^{2} 3^{2}+1 \\
\lim _{(x, y) \rightarrow(2,3)} \frac{x+\sin y}{x^{2} y^{2}+1} & \stackrel{c}{=} \frac{\lim _{(x, y) \rightarrow(2,3)}(x+\sin y)}{\lim _{(x, y) \rightarrow(2,3)}\left(x^{2} y^{2}+1\right)} \\
& =\frac{2+\sin 3}{37}
\end{aligned}
$$

Here we have used that $\sin x$ is a continuous function. In this course we shall assume that we already know that "standard single variable calculus functions" like $\sin x, \cos x, e^{x}$ and so on are continuous.

Example 7 As a second example, we consider $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x^{2}+y^{2}}$. In this example, both the numerator, $x^{2} y$, and the denominator $x^{2}+y^{2}$ tend to zero as $(x, y)$ approachs $(0,0)$, so we have to be more careful. A good way to see the behaviour of a function $f(x, y)$ when $(x, y)$ is close to $(0,0)$ is to switch to the polar coordinates $r, \theta$ using

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta
\end{aligned}
$$



Recall that the definition of $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=L$ is

$$
\begin{equation*}
\forall \varepsilon>0 \exists \delta>0 \text { such that }|f(x, y)-L|<\varepsilon \text { whenever } 0<|(x, y)|<\delta \tag{5}
\end{equation*}
$$

The condition $0<|(x, y)|<\delta$ says that $0<r<\delta$ and no restriction on $\theta$. So substituting $x=r \cos \theta, y=r \sin \theta$ into (5) gives
$\forall \varepsilon>0 \exists \delta>0$ such that $|f(r \cos \theta, r \sin \theta)-L|<\varepsilon$ whenever $0<r<\delta, 0 \leq \theta \leq 2 \pi$ (6)
For our current example

$$
\frac{x^{2} y}{x^{2}+y^{2}}=\frac{(r \cos \theta)^{2}(r \sin \theta)}{r^{2}}=r \cos ^{2} \theta \sin \theta
$$

As $\left|r \cos ^{2} \theta \sin \theta\right| \leq r \rightarrow 0$ when $r \rightarrow 0$, we have

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x^{2}+y^{2}}=0
$$

Example 8 As a third example, we consider $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-y^{2}}{x^{2}+y^{2}}$. Once again, the best way to see the behaviour of $\frac{x^{2}-y^{2}}{x^{2}+y^{2}}$ for $(x, y)$ close to $(0,0)$ is to switch to polar coordinates.

$$
\frac{x^{2}-y^{2}}{x^{2}+y^{2}}=\frac{(r \cos \theta)^{2}-(r \sin \theta)^{2}}{r^{2}}=\cos ^{2} \theta-\sin ^{2} \theta=\cos (2 \theta)
$$

No matter how small you make $\delta>0$, as $(x, y)$ runs over those points with $r=|(x, y)|<\delta$, $\frac{x^{2}-y^{2}}{x^{2}+y^{2}}$ takes all values in the interval $[-1,1]$. So $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-y^{2}}{x^{2}+y^{2}}$ does not exist.


