A Little Logic

"There Exists" and "For All"

The symbol \exists is read "there exists" and the symbol \forall is read "for all" (or "for each" or "for every", if it reads better). Let $S(\varepsilon)$ be a statement that contains the parameter ε . For example, $S(\varepsilon)$ might be " $5 < \varepsilon$ ". Then

- the statement " $\exists \varepsilon > 0$ such that $S(\varepsilon)$ " is true if there exists at least one $\varepsilon > 0$ such that $S(\varepsilon)$ is true and
- the statement " $\forall \varepsilon > 0$ $S(\varepsilon)$ " is true if $S(\varepsilon)$ is true whenever $\varepsilon > 0$.

On the other hand

- the statement " $\exists \varepsilon > 0$ such that $S(\varepsilon)$ " is false when $S(\varepsilon)$ is false for every $\varepsilon > 0$ and
- the statement " $\forall \varepsilon > 0 \quad S(\varepsilon)$ " is false when there exists at least one $\varepsilon > 0$ for which $S(\varepsilon)$ is false.

Example 1 Let $S(\varepsilon)$ be the statement " $5 < \varepsilon$ ". Then

- the statement " $\exists \varepsilon > 0$ such that $S(\varepsilon)$ " is true since there does indeed exist an $\varepsilon > 0$, for example $\varepsilon = 6$, such that $S(\varepsilon)$ is true.
- On the other hand, the statement " $\forall \varepsilon > 0 \quad S(\varepsilon)$ " is false since there is at least one $\varepsilon > 0$, for example $\varepsilon = 4$, such that $S(\varepsilon)$ is is false.

Let $S(\delta, \varepsilon)$ be a statement that contains the two parameters δ and ε . For example, $S(\delta, \varepsilon)$ might be "if $|x| < \delta$ then $x^2 < \varepsilon$ ". Define the statement U to be

 $\forall \varepsilon > 0 \ \exists \delta > 0$ such that $S(\delta, \varepsilon)$

To analyse U, define, for each $\varepsilon > 0$, the statement $T(\varepsilon)$ to be " $\exists \delta > 0$ such that $S(\delta, \varepsilon)$ ". Then U is the statement " $\forall \varepsilon > 0$ $T(\varepsilon)$ " and

- U is true if $T(\varepsilon)$ is true for every $\varepsilon > 0$.
- Given any fixed $\varepsilon_0 > 0$, $T(\varepsilon_0)$ is true if there exists at least one $\delta > 0$ such that $S(\delta, \varepsilon_0)$ is true.
- So, all together, U is true if for each $\varepsilon > 0$, there exists at least one $\delta > 0$ (which may depend on ε) such that $S(\delta, \varepsilon)$ is true.

On the other hand

- U is false if $T(\varepsilon)$ is false for at least one $\varepsilon > 0$.
- Given any fixed $\varepsilon_0 > 0$, $T(\varepsilon_0)$ is false if there does not exist at least one $\delta > 0$ such that $S(\delta, \varepsilon_0)$ is true. That is, if $S(\delta, \varepsilon_0)$ is false for all $\delta > 0$.

• So, all together, U is false if there exists at least one $\varepsilon > 0$, such that $S(\delta, \varepsilon)$ is false for all $\delta > 0$. That is, U is false if the statement

 $\exists \varepsilon > 0$ such that $\forall \delta > 0$ $S(\delta, \varepsilon)$ is false

is true.

- **Example 2** In this example, we will always assume that $\delta > 0$ and $\varepsilon > 0$. Let
 - $S(\delta, \varepsilon)$ be the statement "if $|x| < \delta$ then $x^2 < \varepsilon$ ",
 - $T(\varepsilon)$ be the statement " $\exists \delta > 0$ such that $S(\delta, \varepsilon)$ " or

 $\exists \delta > 0$ such that if $|x| < \delta$ then $x^2 < \varepsilon$

 $\circ~U$ be the statement " $\forall\,\varepsilon>0~T(\varepsilon)$ " or

 $\forall \varepsilon > 0 \; \exists \delta > 0 \; \text{ such that } \; \text{ if } |x| < \delta \; \text{then } x^2 < \varepsilon$

Then

- For example, $S(\delta, \varepsilon)$ is true when $\delta = 2$ and $\varepsilon = 2^2 = 4$. That is S(2, 4) is true. On the other hand S(2, 3) is false. In general, $S(\delta, \varepsilon)$ is true if and only if $\varepsilon \ge \delta^2$, because as x runs over the interval $-\delta < x < \delta$, x^2 covers the set $0 \le x^2 < \delta^2$.
- For example, T(4) is true because when $\varepsilon = 4$, we may choose $\delta = 2$ and then $S(\delta = 2, \varepsilon = 4)$ is true. In fact, $T(\varepsilon)$ is true for every $\varepsilon > 0$, because we may choose $\delta = \sqrt{\varepsilon}$ and then $S(\sqrt{\varepsilon}, \varepsilon)$ is true.
- U is true since, as we have just seen, $T(\varepsilon)$ is true for all $\varepsilon > 0$.

Example 3 In this example, we will again assume that $\delta > 0$ and $\varepsilon > 0$. Let

- $S(\delta,\varepsilon)$ be the statement "if $|x| < \delta$ then $1 + x^2 < \varepsilon$ ",
- $T(\varepsilon)$ be the statement " $\exists \delta > 0$ such that $S(\delta, \varepsilon)$ " or

$$\exists \delta > 0$$
 such that if $|x| < \delta$ then $1 + x^2 < \varepsilon$

• U be the statement " $\forall \varepsilon > 0 \ T(\varepsilon)$ " or

$$\forall \varepsilon > 0 \ \exists \delta > 0$$
 such that if $|x| < \delta$ then $1 + x^2 < \varepsilon$

Then

• when x runs over the interval $-\delta < x < \delta$, $1 + x^2$ covers the set $1 \le 1 + x^2 < 1 + \delta^2$. Hence $S(\delta, \varepsilon)$ is true if and only if $\varepsilon \ge 1 + \delta^2$.

- Because $S(\delta, \varepsilon)$ is true if and only if $\varepsilon \ge 1 + \delta^2$, the statement $T(\varepsilon)$ is equivalent to " $\exists \delta > 0$ such that $\varepsilon \ge 1 + \delta^2$ " which is true if and only if $\varepsilon > 1$. (If $\varepsilon > 1$, we may choose $\delta = \sqrt{\varepsilon - 1}$. If $\varepsilon < 1$, no δ works since $1 + \delta^2$ is always at least 1. If $\varepsilon = 1$, the only δ which could work is $\delta = 0$, and it does not satisfy the condition $\delta > 0$.)
- U is false since, as we have just seen, $T(\varepsilon)$ is false for at least one $\varepsilon > 0$. For example $T(\frac{1}{2})$ is false.

Converse, Inverse, Contrapositive

Let S_1 and S_2 be statements. For example S_1 might be "x is a rational number" and S_2 might be "x is a real number". Define the statement T to be "If S_1 is true then S_2 is true.". Then

- the converse of T is the statement "If S_2 is true then S_1 is true.",
- the inverse of T is the statement "If S_1 is false then S_2 is false." and
- the contrapositive of T is the statement "If S_2 is false then S_1 is false."

If the statement T is true, then

- $\circ\,$ the converse of T need not be true,
- $\circ\,$ the inverse of T need not be true and
- \circ the contrapositive of T is necessarily true.

Example 4 Let S_1 be the statement "x is a rational number" and S_2 be the statement "x is a real number". Then

- \circ T is the statement "If x is a rational number then x is a real number." and is true,
- the converse of T is the statement "If x is a real number then x is a rational number." and is false,
- \circ the inverse of T is the statement "If x is not a rational number then x is not a real number." and is false, and
- the contrapositive of T is the statement "If x is not a real number then x is not a rational number." and is true.