A Limit That Doesn't Exist

In this example we study the behaviour of the function

$$
f(x, y)= \begin{cases}\frac{(2 x-y)^{2}}{x-y} & \text { if } x \neq y \\ 0 & \text { if } x=y\end{cases}
$$

as $(x, y) \rightarrow(0,0)$. Here is a graph of the level curves, $f(x, y)=c$, of this function for various values of the constant c.

In polar coordinates

$$
f(r \cos \theta, r \sin \theta)= \begin{cases}r \frac{(2 \cos \theta-\sin \theta)^{2}}{\cos \theta-\sin \theta} & \text { if } \cos \theta \neq \sin \theta \\ 0 & \text { if } \cos \theta=\sin \theta\end{cases}
$$

If we approach the origin along any fixed ray $\theta=$ const, then $f(r \cos \theta, r \sin \theta)$ is the constant $\frac{(2 \cos \theta-\sin \theta)^{2}}{\cos \theta-\sin \theta}$ (or 0 if $\cos \theta=\sin \theta$) times r and so approachs zero as r approachs zero. You can see this in the figure on the left below, which shows the level curves again, with the rays $\theta=\frac{1}{8} \pi$ and $\theta=\frac{3}{16} \pi$ superimposed.

Nontheless, $f(x, y)$ does not have any limit as $(x, y) \rightarrow 0$. This is because if you fix any $r>0$, no matter how small, $f(x, y)$ takes all values from $-\infty$ to $+\infty$ on the circle $x^{2}+y^{2}=r^{2}$. You can see this in the figure on the right below, which shows the level curves yet again, with a circle $x^{2}+y^{2}=r^{2}$ superimposed. So for every $\delta>0, f(x, y)$ takes all values from $-\infty$ to $+\infty$ as (x, y) runs over the disk $|(x, y)|<\delta$.

Another way to show that $f(x, y)$ does not have any limit as $(x, y) \rightarrow 0$ is to show that $f(x, y)$ does not have a limit as (x, y) approachs $(0,0)$ along some specific curve. This can be done by picking a curve that makes the denominator, $x-y$, tend to zero very quickly. One such curve is $x-y=x^{3}$ or, equivalently, $y=x-x^{3}$. Along this curve, for $x \neq 0$, $f\left(x, x-x^{3}\right)=\frac{\left(2 x-x+x^{3}\right)^{2}}{x-x+x^{3}}=\frac{\left(x+x^{3}\right)^{2}}{x^{3}}=\frac{\left(1+x^{2}\right)^{2}}{x} \longrightarrow \begin{cases}+\infty & \text { as } x \rightarrow 0 \text { with } x>0 \\ -\infty & \text { as } x \rightarrow 0 \text { with } x<0\end{cases}$ The figure below shows the level curves, magnified, with the curve $y=x-x^{3}$ superimposed.

The choice of the power x^{3} is not not important. Any power x^{p} with $p>2$ will have the same effect. If we send (x, y) to $(0,0)$ along the curve $x-y=a x^{2}$ or, equivalently, $y=x-a x^{2}$, where a is a constant,

$$
\lim _{x \rightarrow 0} f\left(x, x-a x^{2}\right)=\lim _{x \rightarrow 0} \frac{\left(2 x-x+a x^{2}\right)^{2}}{x-x+a x^{2}}=\lim _{x \rightarrow 0} \frac{\left(x+a x^{2}\right)^{2}}{a x^{2}}=\lim _{x \rightarrow 0} \frac{(1+a x)^{2}}{a}=\frac{1}{a}
$$

This limit depends on the choice of the constant a. Once again, this proves that $f(x, y)$ does not have a limit as $(x, y) \rightarrow 0$.

