
Taylor Expansions in 2d

In your first year Calculus course you developed a family of formulae for approximating a

function F (t) for t near any fixed point t0. The crudest approximation was just a constant.

F (t0 +∆t) ≈ F (t0)

The next better approximation included a correction that is linear in ∆t.

F (t0 +∆t) ≈ F (t0) + F ′(t0)∆t

The next better approximation included a correction that is quadratic in ∆t.

F (t0 +∆t) ≈ F (t0) + F ′(t0)∆t+ 1
2F

′′(t0)∆t2

And so on. The approximation that includes all corrections up to order ∆tn is

F (t0 +∆t) ≈ F (t0) + F ′(t0)∆t+ 1
2!F

′′(t0)∆t2 + 1
3!F

(3)(t0)∆t3 + · · · + 1
n!F

(n)(t0)∆tn

You may have also found a formula for the error introduced in making this approximation. The

error En(∆t) is defined by

F (t0 +∆t) = F (t0) + F ′(t0)∆t+ 1
2!
F ′′(t0)∆t2 + · · · + 1

n!
F (n)(t0)∆tn + En(∆t)

and obeys

En(∆t) = 1
(n+1)!F

(n+1)(t∗)∆tn+1

for some (unknown) t∗ between t0 and t0 +∆t. Even though we do not know what t∗ is, we can

still learn a lot from this formula for En. If we know that
∣

∣F (n+1)(t)
∣

∣ ≤ Mn+1 for all t between

t0 and t0 + ∆t, then
∣

∣En(∆t)
∣

∣ ≤ Mn+1

(n+1)!
∆tn+1, which tells us that En(∆t) goes to zero like the

(n+ 1)st power of ∆t as ∆t tends to zero.

We now generalize all this to functions of more than one variable. To be concrete and to save

writing, we’ll just look at functions of two variables, but the same strategy works for any number

of variables. We’ll also assume that all partial derivatives exist and are continuous. Suppose that

we wish to approximate f(x0 +∆x, y0 +∆y) for ∆x and ∆y near zero. The trick is to write

f(x0 +∆x, y0 +∆y) = F (1) with F (t) = f(x0 + t∆x, y0 + t∆y)

and think of x0, y0, ∆x and ∆y as constants so that F is a function of the single variable t. Then

we can apply our single variable formulae with t0 = 0 and ∆t = 1. To do so we need to compute

various derivatives of F (t) at t = 0, by applying the chain rule to

F (t) = f
(

x(t), y(t)
)

with x(t) = x0 + t∆x, y(t) = y0 + t∆y
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Since d
dt
x(t) = ∆x and d

dt
y(t) = ∆y, the chain rule gives

dF
dt
(t) = ∂f

∂x

(

x(t), y(t)
)

d
dt
x(t) + ∂f

∂y

(

x(t), y(t)
)

d
dt
y(t)

= fx(x0 + t∆x, y0 + t∆y)∆x+ fy(x0 + t∆x, y0 + t∆y)∆y

d2F
dt2

(t) =
[

∂fx
∂x

(

x(t), y(t)
)

d
dt
x(t) + ∂fx

∂y

(

x(t), y(t)
)

d
dt
y(t)

]

∆x

+
[

∂fy
∂x

(

x(t), y(t)
)

d
dt
x(t) +

∂fy
∂y

(

x(t), y(t)
)

d
dt
y(t)

]

∆y

= ∂2f
∂x2∆x2 + ∂2 f

∂y∂x
∆y∆x+ ∂2 f

∂x∂y
∆x∆y + ∂2f

∂y2 ∆y2

= ∂2f
∂x2∆x2 + 2 ∂2 f

∂x∂y
∆x∆y + ∂2f

∂y2 ∆y2

and so on. It’s not hard to prove by induction that, in general, for any natural number k,

F (k)(t) =
k

∑

ℓ=0

(

k
ℓ

)

∂k f
∂xℓ∂yk−ℓ (x0 + t∆x, y0 + t∆y)∆xℓ∆yk−ℓ

where
(

k
ℓ

)

= k!
ℓ!(k−ℓ)!

is the standard binomial coefficient. So when t = 0,

F (0) = f(x0, y0)

dF
dt
(0) = ∂f

∂x
(x0, y0)∆x+ ∂f

∂y
(x0, y0)∆y

1
2!

d2F
dt2

(0) = 1
2
∂2f
∂x2 (x0, y0)∆x2 + ∂2 f

∂x∂y
(x0, y0)∆x∆y + 1

2
∂2f
∂y2 (x0, y0)∆y2

1
k!

dkF
dtk

(0) =
∑

0≤ℓ,m≤k
ℓ+m=k

1
ℓ!m!

∂k f
∂xℓ∂ym (x0, y0) ∆xℓ∆ym

Subbing these into

f(x0 +∆x, y0 +∆y) = F (t0 +∆t)
∣

∣

t0=0,∆t=1
=

n
∑

k=0

1
k!
F (k)(0) +En(1)

gives

f(x0 +∆x, y0 +∆y) =
∑

0≤ℓ,m≤n
ℓ+m≤n

1
ℓ!m!

∂ℓ+m f
∂xℓ∂ym (x0, y0) ∆xℓ∆ym +En

= f(x0, y0)

+ fx(x0, y0)∆x+ fy(x0, y0)∆y

+ 1
2

[

fxx(x0, y0)∆x2 + 2fxy(x0, y0)∆x∆y + fyy(x0, y0)∆y2
]

+ E2

If all partial derivatives of f of order n+ 1 are bounded in magnitude by M , then

∣

∣En

∣

∣ = 1
(n+1)!

∣

∣F (n+1)(t∗)
∣

∣ ≤ 1
(n+1)!

n+1
∑

ℓ=0

(

n+1
ℓ

)

M |∆x|ℓ|∆y|n+1−ℓ = M
(n+1)!

(

|∆x|+ |∆y|
)n+1
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Example. In this example, we find the second order Taylor expansion of f(x, y) =
√

1 + 4x2 + y2

about (x0, y0) = (1, 2) and use it to compute approximately f(1.1 , 2.05). We first compute all

partial derivatives up to order 2 at (x0, y0).

f(x, y) =
√

1 + 4x2 + y2 f(x0, y0) = 3

fx(x, y) =
4x√

1+4x2+y2
fx(x0, y0) =

4
3

fy(x, y) =
y√

1+4x2+y2
fy(x0, y0) =

2
3

fxx(x, y) =
4√

1+4x2+y2
− 16x2

[1+4x2+y2]3/2
fxx(x0, y0) =

4
3
− 16

27
= 20

27

fxy(x, y) = − 4xy
[1+4x2+y2]3/2

fxy(x0, y0) = − 8
27

fyy(x, y) =
1√

1+4x2+y2
− y2

[1+4x2+y2]3/2
fyy(x0, y0) =

1
3 − 4

27 = 5
27

So the quadratic approximation to f about (x0, y0) is

f
(

x0 +∆x , y0 +∆y
)

≈ f(x0, y0) + fx(x0, y0)∆x+ fy(x0, y0)∆y

+ 1
2

[

fxx(x0, y0)∆x2 + 2fxy(x0, y0)∆x∆y + fyy(x0, y0)∆y2
]

= 3 + 4
3∆x+ 2

3∆y + 10
27∆x2 − 8

27∆x∆y + 5
54∆y2

In particular, with ∆x = 0.1 and ∆y = 0.05,

f(1.1 , 2.05) ≈ 3 + 4
3(0.1) +

2
3 (0.05) +

10
27 (0.01)− 8

27(0.005) +
5
54 (0.0025) = 3.1691

The actual value, to four decimal places, is 3.1690.

Example. In this example, we find the third order Taylor expansion of f(x, y) = e2x sin(3y) about

(x0, y0) = (0, 0) in two different ways. The first way uses the canned formula. We first compute

all partial derivatives up to order 3 at (x0, y0).

f(x, y) = e2x sin(3y) f(x0, y0) = 0

fx(x, y) = 2e2x sin(3y) fx(x0, y0) = 0

fy(x, y) = 3e2x cos(3y) fy(x0, y0) = 3

fxx(x, y) = 4e2x sin(3y) fxx(x0, y0) = 0

fxy(x, y) = 6e2x cos(3y) fxy(x0, y0) = 6

fyy(x, y) = −9e2x sin(3y) fyy(x0, y0) = 0

fxxx(x, y) = 8e2x sin(3y) fxx(x0, y0) = 0

fxxy(x, y) = 12e2x cos(3y) fxxy(x0, y0) = 12

fxyy(x, y) = −18e2x sin(3y) fxyy(x0, y0) = 0

fyyy(x, y) = −27e2x cos(3y) fyyy(x0, y0) = −27
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So the Taylor expansion, about (0, 0) to order three is

f(x, y) =
∑

0≤ℓ,m≤3

ℓ+m≤3

1
ℓ!m!

∂ℓ+m f

∂xℓ∂ym (0, 0) xℓym + E3(x, y)

= 1
0!1!3y +

1
1!1!6xy +

1
2!1!12x

2y − 1
0!3!27y

3 + E3(x, y)

= 3y + 6xy + 6x2y − 9
2y

3 + E3(x, y)

A second way to get the same result exploits the single variable Taylor expansions

ex = 1 + x+ 1
2!
x2 + 1

3!
x3 + · · ·

sin y = y − 1
3!
y3 + · · ·

Replacing x by 2x in the first and y by 3y in the second and multiplying the two together, keeping

track only of terms of degree at most three, gives

f(x, y) = e2x sin(3y)

=
[

1 + (2x) + 1
2!
(2x)2 + 1

3!
(2x)3 + · · ·

][

(3y)− 1
3!
(3y)3 + · · ·

]

=
[

1 + 2x+ 2x2 + 4
3x

3 + · · ·
][

3y − 9
2y

3 + · · ·
]

= 3y − 9
2y

3 + 6xy + 6x2y + · · ·

just as in the first computation.

Problem 1 Derive the Taylor expansion, to order 2 in powers of ∆x, ∆y and ∆z, of

f
(

x0 +∆x, y0 +∆y, z0 +∆z
)

Answer: In general, the expansion to order N is

f(x0 +∆x, y0 +∆y, z0 +∆z) =
∑

0≤ℓ,m,n≤2

ℓ+m+n≤N

1
ℓ!m!n!

∂ℓ+m+n f
∂xℓ∂ym∂zn (x0, y0, z0) (∆x)ℓ(∆y)m(∆z)n + En

Problem 2 Find the second order Taylor expansion of f(x, y) = 1
1+x2+y2 about (x0, y0) = (1,−1).

Answer: f(1 + ∆x,−1 +∆y) = 1
3
− 2

9
∆x+ 2

9
∆y + 1

27
∆x2 − 8

27
∆x∆y + 1

27
∆y2 + · · ·

Problem 3 Find the second order Taylor expansion of f(x, y, z) = 1
1+x2+y2+z2 about (x0, y0, z0) =

(0, 0, 0).

Answer: f(x, y, z) = 1− x2 − y2 − z2 + · · ·
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Problem 4 Find the second order Taylor expansion of f(x, y) = ex+2y about (x0, y0) = (0, 0).

Bound the error of this approximation if |x| ≤ 0.1 and |y| ≤ 0.1.

Answer: f(x, y) = 1 + x + 2y + 1
2x

2 + 2xy + 2y2 + E2(x, y) with
∣

∣E2(x, y)
∣

∣ ≤ (0.3)3

3! e0.3 when

|x| ≤ 0.1 and |y| ≤ 0.1. (Of course there are many other correct bounds on
∣

∣E2(x, y)
∣

∣.)

Problem 5 The function z = f(x, y) solves the equation x+ 2y + z + e2z = 1. Find the Taylor

polynomial of degree two for f(x, y) in powers of x and y.

Answer: f(x, y) = − 1
3x− 2

3y − 2
27x

2 − 8
27xy − 8

27y
2 + · · ·

Problem 6 Suppose that f(x, y) is a polynomial of degree n. Prove that for all real numbers x0,

y0, ∆x and ∆y,

f(x0 +∆x, y0 +∆y) =
∑

0≤ℓ,m≤n
ℓ+m≤n

1
ℓ!m!

∂ℓ+m f
∂xℓ∂ym (x0, y0) (∆x)ℓ(∆y)m

Note that this formula is exact. There is no error term En.
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