Multivariables Calculus Warnings

These notes highlight number of common, but serious, multivariable calculus errors.

Warning 1. A line in three dimensions has infinitely many normal vectors.
Discussion. For example, the line

$$
(x, y, z)=(1,1,0)+t(1,2,-2)
$$

has direction vector $(1,2,-2)$. Any vector perpendicular to $(1,2,-2)$ is perpendicular to the line. The vector $\left(n_{1}, n_{2}, n_{3}\right)$ is perpendicular to $(1,2,-2)$ if and only if

$$
0=(1,2,-2) \cdot\left(n_{1}, n_{2}, n_{3}\right)=n_{1}+2 n_{2}-2 n_{3}
$$

There is whole plane of $\left(n_{1}, n_{2}, n_{3}\right)$'s obeying this condition, of which $(2,-1,0),(0,1,1)$ and $(2,0,1)$ are only three examples.

Warning 2. The cross product has two properties that are very different from the corresponding properties for the multiplication of real numbers.

$$
\begin{gathered}
\vec{a} \times \vec{b} \neq \vec{b} \times \vec{a} \\
\vec{a} \times(\vec{b} \times \vec{c}) \neq(\vec{a} \times \vec{b}) \times \vec{c}
\end{gathered}
$$

for most \vec{a}, \vec{b} and \vec{c}. For example

$$
\begin{aligned}
& \hat{\imath} \times(\hat{\imath} \times \hat{\jmath})=\hat{\imath} \times \hat{k}=-\hat{k} \times \hat{\imath}=-\hat{\jmath} \\
& (\hat{\imath} \times \hat{\imath}) \times \hat{\jmath}=\overrightarrow{0} \times \hat{\jmath}=\overrightarrow{0}
\end{aligned}
$$

