
The RLC Circuit

The RLC circuit is the electrical circuit consisting of a resistor of resistance R, a coil of inductance L, a

capacitor of capacitance C and a voltage source arranged in series. We’re going to think of the voltage x(t)

+

−
x(t)

R L

C
i(t)

+

−

y(t)

as an input signal and the voltage y(t) as an output signal. The goal is to determine the output voltage for

a given input voltage. If i(t) is the current flowing at time t in the loop as shown and q(t) is the charge on

the capacitor, then the voltage across R, L and C, respectively, at time t are Ri(t), L di
dt
(t) and y(t) = q(t)

C
.

By the Kirchhoff’s law that says that the voltage between any two points has to be independent of the path

used to travel between the two points, these three voltages must add up to x(t) so that

Ri(t) + L di
dt
(t) + q(t)

C
= x(t) (1)

Assuming that R, L, C and x(t) are known, this is still one differential equation in two unknowns, i(t) and

q(t). Fortunately, there is a relationship between the two. Namely

i(t) = dq
dt
(t) = Cy′(t) (2)

This just says that the capacitor cannot create or destroy charge on its own. All charging of the capacitor

must come from the current. Subbing (2) into (1) gives

LCy′′(t) + RCy′(t) + y(t) = x(t) (3)

For an ac voltage source, choosing the origin of time so that x(0) = 0, x(t) = E0 sin(ωt) and the differential

equation becomes

LCy′′(t) +RCy′(t) + y(t) = E0 sin(ωt) (4)

One Solution

We first guess one solution of (4) by trying yp(t) = A sin(ωt− ϕ) with the amplitude A and phase ϕ to

be determined. That is, we are guessing that the circuit responds to an oscillating applied voltage with a

current that oscillates at the same frequency. For yp(t) to be a solution, we need

LCy′′p (t) +RCy′p(t) + yp(t) = E0 sin(ωt) (4p)

−LCω2A sin(ωt− ϕ) +RCωA cos(ωt− ϕ) +A sin(ωt− ϕ) = E0 sin(ωt)

= E0 sin(ωt− ϕ+ ϕ)

and hence, applying sin(A+B) = sinA cosB + cosA sinB with A = ωt− ϕ and B = ϕ,

(

1− LCω2
)

A sin(ωt− ϕ) +RCωA cos(ωt− ϕ) = E0 cos(ϕ) sin(ωt− ϕ) + E0 sin(ϕ) cos(ωt− ϕ)

c© Joel Feldman. 2007. All rights reserved. January 3, 2007 The RLC Circuit 1



Matching coefficients of sin(ωt− ϕ) and cos(ωt− ϕ) on the left and right hand sides gives

(

1− LCω2
)

A = E0 cos(ϕ) (5)

RCωA = E0 sin(ϕ) (6)

It is now easy to solve for A and ϕ

(6)

(5)
=⇒ tan(ϕ) =

RCω

1− LCω2
=⇒ ϕ = tan−1 RCω

1− LCω2

√

(5)2 + (6)2 =⇒
√

(

1− LCω2
)2

+R2C2ω2 A = E0 =⇒ A =
E0

√

(1 − LCω2)2 +R2C2ω2

(7)

Naturally, different input frequencies ω give different output amplitudes A. Here is a graph of A against ω,

with all other parameters held fixed.

ω

A

Note that there is a small range of frequencies that give a large amplitude response. This is the phenomenon of

resonance. It is exploited in the design of radio and television tuning circuitry. It has also been dramatically

illustrated in, for example, the collapse of the Tacoma narrows bridge.

The General Solution When R2 6= 4L
C

We have found one solution. Now we see if we can find any others. Note that subtracting (4p) from (4)

gives

LC(y − yp)
′′(t) +RC(y − yp)

′(t) + (y − yp)(t) = 0

That is, a function y(t) is a solution of (4) if and only if yc(t) = y(t)− yp(t) is a solution of

LCy′′c (t) +RCy′c(t) + yc(t) = 0 (4c)

This is called the complementary homogeneous equation for (4). It is constructed from (4) by deleting all

y independent terms. We now guess many solutions to (4c). Any solution, yc(t), of (4c) has to have the

property that yc(t), RCy′c(t) and LCy′′c (t) have to cancel each other out for all t. We choose our guess so

that yc(t), y
′
c(t) and y′′c (t) are all proportional to a single function of t. Then it will easy to see if yc(t),

RCy′c(t) and LCy′′c (t) all cancel. Hence we try yc(t) = ert, with the constant r to the determined. This

guess is a solution of (4c) if and only if

LCr2ert +RCrert + ert = 0 ⇐⇒ LCr2 +RCr + 1 = 0 ⇐⇒ r = −RC±
√
R2C2−4LC
2LC

≡ r1,2 (8)

We now know that er1t and er2t both obey (4c). That is,

LC d2

dt2
er1t +RC d

dt
er1t + er1t = 0 (9a)

LC d2

dt2
er2t +RC d

dt
er2t + er2t = 0 (9b)
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for all t. Now let c1 and c2 be any constants. Multiplying (9a) by c1 and (9b) by c2 and adding gives

LC d2

dt2

(

c1e
r1t + c2e

r2t
)

+RC d
dt

(

c1e
r1t + c2e

r2t
)

+
(

c1e
r1t + c2e

r2t
)

= 0

So c1e
r1t + c2e

r2t is also a solution of (4c). We now have a two parameter family of solutions of (4c). It is

reasonable to guess that, to solve a differential equation involving a second derivative, one has to integrate

twice so that the general solution contains two arbitrary constants. This is in fact the case, though the

proof, or even giving a precise meaning to “the general solution contains two arbitrary constants”, is beyond

the scope of this course. Assuming that R2 6= 4L
C
, r1 and r2 are different and the general solution to (4c) is

c1e
r1t + c2e

r2t. Then, the general solution of (4) is

y(t) = c1e
r1t + c2e

r2t +A sin(ωt− ϕ)

with r1, r2 given in (8) and A, ϕ given in (7).

The arbitrary constants c1 and c2 are to be determined by initial conditions. However, when R,L,C > 0,

as is often the case, er1t and er2t damp out exponentially and their values are not very important. To see

this, observe that, as we are assuming R2 6= 4L
C
, R2C2 − 4LC is either strictly positive or negative.

◦ In the event that it is positive 0 < R2C2 − 4LC < R2C2, so that 0 <
√
R2C2 − 4LC < RC and

−RC ±
√
R2C2 − 4LC < 0. So, when R2C2 − 4LC > 0, both r1 and r2 are negative and both er1t and

er2t decay exponentially to zero as t → ∞.

◦ In the event that R2C2 − 4LC is negative,
√
R2C2 − 4LC is pure imaginary. Write R

2L = ρ and
1

2LC

√
R2C2 − 4LC = iω. Then

c1e
r1t + c2e

r2t = c1e
(−ρ+iω)t + c2e

(−ρ−iω)t = e−ρt
[

c1e
iωt + c2e

−iωt
]

= e−ρt
[

c1
(

cos(ωt) + i sin(ωt)
)

+ c2
(

cos(ωt)− i sin(ωt)
)]

= e−ρt
[

d1 cos(ωt) + d2 sin(ωt)
]

where d1 = c1 + c2 and d2 = ic1 − ic2. The factor
[

d1 cos(ωt) + d2 sin(ωt)
]

just oscillates in time. It

remains bounded. On the other hand e−ρt decays exponentially. So, for any c1, c2, c1e
r1t+c2e

r2t decays

exponentially to zero as t → ∞.

The General Solution When R2 = 4L
C

From now on, assume R2 = 4L
C
. To save writing, set ρ = R

2L . Now, r1 = r2 = ρ, so

c1e
r1t + c2e

r2t = (c1 + c2)e
−ρt = de−ρt

where d = c1 + c2. We really only have a one parameter family of solutions to (4c). The general solution

to (4c) contains two independent free parameters. Here is a trick (called reduction of order) for finding the

other solutions: look for solutions of the form v(t)e−ρt. Here e−ρt is the solution we have already found and

v(t) is to be determined. To save writing, divide (4c) by LC and substitute that R
L
= 2ρ and 1

LC
= R2

4L2 = ρ2

(recall that we are assuming that R2 = 4L
C
). So (4c) is equivalent to

y′′c (t) + 2ρ y′c(t) + ρ2 yc(t) = 0

Sub in
yc(t) = v(t)e−ρt

y′c(t) = −ρ v(t)e−ρt + v′(t)e−ρt

y′′c (t) = ρ2v(t)e−ρt − 2ρv′(t)e−ρt + v′′(t)e−ρt
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When yc(t) = v(t)e−ρt,

y′′c (t) + 2ρ y′c(t) + ρ2 yc(t) =
[

ρ2 − 2ρ2 + ρ2
]

v(t)e−ρt +
[

− 2ρ+ 2ρ
]

v′(t)e−ρt + v′′(t)e−ρt

= v′′(t)e−ρt

Thus v(t)e−ρt is a solution of (4c) whenever the function v′′(t) = 0 for all t. But, for any values of the

constants c1 and c2, v(t) = c1 + c2t has vanishing second derivative so
(

c1 + c2t
)

e−ρt solves (4c) and

y(t) =
(

c1 + c2t
)

e−ρt +A sin(ωt− ϕ)

solves (4). This is the general solution.
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