
Buoyancy

In these notes, we use the divergence theorem to show that when you immerse a body

in a fluid the net effect of fluid pressure acting on the surface of the body is a vertical force

(called the buoyant force) whose magnitude equals the weight of fluid displaced by the

body. This is known as Archimedes’ principle. We shall also show that the buoyant force

acts through the “centre of buoyancy” which is the centre of mass of the fluid displaced by

the body. The design of self righting boats exploits the fact that the centre of buoyancy

and the centre of gravity, where gravity acts, need not be the same.

We start by computing the total force due to the pressure of the fluid pushing on the

body. Recall that pressure

◦ is the force per unit surface area that the fluid exerts on the body

◦ acts perpendicularly to the surface

◦ pushes on the body

Thus the force due to pressure that acts on an infinitesimal piece of body surface at

r = (x, y, z) with surface area dS and outward normal n̂ is −p(r) n̂dS. The minus sign is

there because pressure is directed into the body. If the body fills the volume V and has

surface ∂V , then the total force on the body due to fluid pressure is

B = −

∫∫

∂V

p(r) n̂ dS

We now wish to apply a variant of the divergence theorem to rewrite B = −
∫∫∫

V
∇∇∇p dV .

But there is a problem with this: p(r) is the fluid pressure at r and is only defined where

there is fluid. In particular, there is no fluid inside the body, so p(r) is not defined for r in

the interior of V . So we pretend that we remove the body from the fluid and we call P (r)

the fluid pressure at r when there is no body in the fluid. We also make the assumption

that at any point r outside of the body, the pressure at r does not depend on whether the

body is in the fluid or not. In other words, we assume that

p(r) =
{

P (r) if r is not in V

not defined if r is in the V

This assumption is only an approximation to reality, but, in practice, it is a very good

approximation. So

B = −

∫∫

∂V

p(r) n̂ dS = −

∫∫

∂V

P (r) n̂dS = −

∫∫∫

V

∇∇∇P (r) dV (1)

Our next job is to compute ∇∇∇P . Concentrate on an infinitesimal cube of fluid whose

edges are parallel to the coordinate axes. Call the lengths of the edges dx, dy and dz and
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the position of the centre of the cube (x, y, z). The forces applied to the various faces of

the cube by the pressure of fluid outside the cube are illustrated in the figure

−P (x, y, z + dz
2 ) dxdy k̂

P (x, y, z − dz
2 ) dxdy k̂

−P (x, y + dy
2 , z) dxdz ̂P (x, y − dy

2 , z) dxdz ̂

The total force due to the pressure acting on the cube is

− P
(

x+ dx
2 , y, z

)

dydz ı̂ıı+ P
(

x− dx
2 , y, z

)

dydz ı̂ıı

− P
(

x, y + dy
2 , z

)

dxdz ̂+ P
(

x, y − dy
2 , z

)

dxdz ̂

− P
(

x, y, z + dz
2

)

dxdy k̂+ P
(

x, y, z − dz
2

)

dxdy k̂

Rewriting

−P
(

x+ dx
2 , y, z

)

dydz ı̂ıı+ P
(

x− dx
2 , y, z

)

dydz ı̂ıı = −
P (x+ dx

2
,y,z)−P (x+ dx

2
,y,z)

dx
ı̂ıı dxdydz

and rewriting the remaining four terms in a similar manner, we see that the total force

due to the pressure acting on the cube is

−
{

∂P
∂x

(x, y, z) ı̂ıı+ ∂P
∂y

(x, y, z) ̂+ ∂P
∂z

(x, y, z) k̂
}

dxdydz = −∇∇∇P (x, y, z) dxdydz

We shall assume that the only other force acting on the cube is gravity and that the fluid

is stationary (or at least not accelerating) so that the total force acting on the cube is zero.

If the fluid has density ρf , then the cube has mass ρf dxdydz so that the force of gravity is

−gρf dxdydz k̂. The vanishing of the total force now tells us that

−∇∇∇P (r) dxdydz − gρf dxdydz k̂ = 0 =⇒ ∇∇∇P (r) = −gρf k̂

Subbing this into (1) gives

B = g k̂

∫∫∫

V

ρf dV = gMf k̂

where Mf =
∫∫∫

V
ρf dV is the mass of the fluid displaced by the body. Thus the buoyant

force acts straight up and has magnitude equal to gMf , which is also the magnitude of the

force of gravity acting on the fluid displaced by the body. In other words, it is the weight

of the displaced fluid. This is exactly Archimedes’ principle.
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We next consider the rotational motion of our submerged body. The physical law

that determines the rotational motion of a rigid body about a point r0 is analogous to the

familiar Newton’s law, mdv
dt

= F, that determines the translational motion of the body.

For the rotational law of motion,

◦ the mass m is replaced by a physical quantity, characteristic of the body, called the

moment of inertia, and

◦ the ordinary velocity v is replaced by the angular velocity, which is a vector whose

length is the rate of rotation (i.e. angle rotated per unit time) and whose direction is

parallel to the axis of rotation (with the sign determined by a right hand rule) and

◦ the force F is replaced by a vector called the torque about r0. A force F applied at

r = (x, y, z) produces the torque (r− r0)× F about r0.

This is derived in the notes “Torque” and is all that we need to know about rotational

motion of rigid bodies in these notes.

Fix any point r0. The total torque about r0 produced by pressure acting on the

surface of the submerged body is

T =

∫∫

∂V

(r− r0)×
(

− p(r)n̂
)

dS =

∫∫

∂V

n̂×
(

P (r) (r− r0)
)

dS

Recall that in these integrals r = (x, y, z) is the position of the infinitesmal piece dS of the

surface S. By the cross product variant of the divergence theorem,

T =

∫∫∫

V

∇∇∇×
(

P (r) (r− r0)
)

dV =

∫∫∫

V

{

∇∇∇P (r)× (r− r0) + P (r)∇∇∇× (r− r0)
}

dV

=

∫∫∫

V

∇∇∇P (r)× (r− r0) dV

since ∇∇∇× r0 = 0, because r0 is a constant, and

∇∇∇× r = det





ı̂ıı ̂ k̂
∂
∂x

∂
∂y

∂
∂z

x y z



 = 0

Subbing in ∇∇∇P (r) = −gρf k̂

T = −

∫∫∫

V

gρf k̂× (r− r0) dV = −gk̂×

∫∫∫

V

ρf(r− r0) dV

= −gk̂×

{
∫∫∫

V

rρf dV − r0

∫∫∫

V

ρf dV

}

= −g

{
∫∫∫

V

ρf dV

}

k̂×

{

∫∫∫

V
rρf dV

∫∫∫

V
ρf dV

− r0

}

= −B×

{

∫∫∫

V
rρf dV

∫∫∫

V
ρf dV

− r0

}

=

{

∫∫∫

V
rρf dV

∫∫∫

V
ρf dV

− r0

}

×B
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So the torque generated at r0 by pressure over the entire surface is the same as a force B

all applied at the single point

CB =

∫∫∫

V
rρf dV

∫∫∫

V
ρf dV

This point is called the centre of buoyancy. It is the centre of mass of the displaced fluid.

The moral of the above discussion is that the buoyant force, B, on a rigid body

◦ acts straight upward,

◦ has magnitude equal to the weight of the displaced fluid and

◦ acts at the centre of buoyancy, which is the centre of mass of the displaced fluid.

Similarly, the gravitational force, G,

◦ acts straight down,

◦ has magnitude equal to the weight gMb = g
∫∫∫

V
rρb dV (where ρb is the density of the

body) of the body and

◦ acts at the centre of mass, CG =

∫∫∫

V
rρb dV

∫∫∫

V
ρb dV

, of the body.

Because the mass distribution of the body need not be the same as the mass distribution of

the displaced fluid, buoyancy and gravity may act at two different points. This is exploited

in the design of self–righting boats. These boats are constructed with a heavy, often lead,

keel. As a result, the centre of gravity is lower in the boat than the center of buoyancy,

which is at the geometric centre of the boat. As the figure below illustrates, a right side

up configuration of such a boat is stable, while an upside down configuration is unstable.

The boat rotates so as to keep the centre of gravity straight below the centre of buoyancy.

B

G

B

G
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