
More About Which Vector Fields Obey ∇∇∇× F = 0

Preliminaries

We already know that if a vector field F passes the screening test ∇∇∇ × F = 0 on all

of IR2 or IR3, then there is a function ϕ with F = ∇∇∇ϕ (that is, F is conservative). We are

now going to take a first look at what happens when F passes the screening test ∇∇∇×F = 0

on only on some proper subset D of IRn. We will just scratch the surface of this topic —

there is a whole subbranch of Mathematics (cohomology theory, which is part of algebraic

topology) concerned with a general form of this question. We shall imagine that we are

given a vector field F that is only defined on D and we shall assume

◦ that D is a connected, open subset of IRn (defined in Definition 1, below)

◦ that all first order derivatives of all vector fields and functions that we consider are

continuous and

◦ that all curves we consider are piecewise smooth. A curve is piecewise smooth if it is

a union of a finite number of smooth curves C1, C2, · · · , Cm with the end point of Ci
being the beginning point of Ci+1 for each 1 ≤ i < m. A curve is smooth if it has a

parametrization r(t), a ≤ t ≤ b, whose first derivative r′(t) exists, is continuous and

is nonzero everywhere.
C1 C2 C3

Definition 1 Let n ≥ 1 be an integer.

(a) Let a ∈ IRn and ε > 0. The open ball of radius ε centred on a is

Bε(a) =
{

x ∈ IRn
∣

∣ |x− a| < ε
}

Note the strict inequality in |x− a| < ε.

(b) A subset O ⊂ IRn is said to be an “open subset of IRn” if, for each point a ∈ O, there

is an ε > 0 such that Bε(a) ⊂ O. Equivalently, O is open if and only if it is a union

of open balls.

(c ) A subset D ⊂ IRn is said to be (pathwise) connected if every pair of points in D can

be joined by a piecewise smooth curve in D.

Example 2

(a) The “open rectangle” O =
{

(x, y) ∈ IR2
∣

∣ 0 < x < 1, 0 < y < 1
}

is an open

subset of IR2 because any point a = (x0, y0) ∈ O is a nonzero distance, namely
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d = min
{

x0, 1 − x0, y0, 1 − y0
}

away from the boundary of O. So the open ball

Bd/2(a) is contained in O.

(b) The “closed rectangle” C =
{

(x, y) ∈ IR2
∣

∣ 0 ≤ x ≤ 1, 0 ≤ y ≤ 1
}

is an not open

subset of IR2. For example, 0 = (0, 0) is a point in C. No matter what ε > 0 we pick,

the open ball Bε(0) is not contained in C because Bε(0) contains the point (− ε
2 , 0),

which is not in C.

O C

Bε

(

(x0, 0)
)

(c) The x–axis, X =
{

(x, y) ∈ IR2
∣

∣ y = 0
}

, in IR2 is not an open subset of IR2 because

for any point (x0, 0) ∈ X and any ε > 0, the ball Bε

(

(x0, 0)
)

contains points with

nonzero y–coordinates and so is not contained in X .

Review

Many of the basic facts that we developed about conservative fields in IRn also applies

(with the same proofs) to fields on D. In particular, for a vector field F on D ⊂ IRn,

F is conservative on D ⇐⇒ F = ∇∇∇ϕ on D, for some function ϕ (again the definition)

⇐⇒ for each P,Q ∈ D the work integral

∫

C

F · dr takes

the same value for all curves C from P to Q

⇐⇒

∫

C

F · dr = 0 for all closed curves C in D

=⇒ ∇∇∇× F = 0 on D

Combining this with Stokes’ theorem gives us the following two consequences.

◦ If D has the property that

every closed curve C in D is the boundary of a bounded oriented surface, S, in D

(H)

then

F is conservative on D ⇐⇒ ∇∇∇× F = 0 on D

This is just because if ∇∇∇× F = 0 on D and if the curve C = ∂S, with S an oriented

surface in D, then Stokes’ theorem gives
∫

C
F · dr =

∫

∂S
F · dr =

∫∫

S
∇∇∇×F · n̂ dS = 0.

◦ For any D, if ∇∇∇ × F = 0 on D, then F is locally conservative. This means that for

each point x0 ∈ D, there is an ε > 0 and a function ϕ such that F = ∇∇∇ϕ on Bε(x0).

This is true just because Bε(x0) satisfies property (H).
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Example 3 Here are some examples of D’s that violate (H).

◦ When D = D1 =
{

(x, y) ∈ IR2
∣

∣ 0 < |(x, y)| < 3
}

, the circle x2 + y2 = 4 is a curve in

D that is not the boundary of a surface in D. The circle x2 + y2 = 4 is the boundary

of the disk x2 + y2 < 4, but the disk x2 + y2 < 1 is not contained in D because the

point (0, 0) is in the disk and not in D. See the figure on the left below.

◦ When D = D2 =
{

(x, y, z) ∈ IR3
∣

∣ |(x, y, z)| < 2, |(x, y)| > 0
}

, the circle x2 + y2 = 1,

z = 0 is a curve in D that is not the boundary of a surface in D. The circle is the

boundary of many different surfaces in IR3, but each contains a point on the z–axis

and so is not contained in D. See the figure in the centre below.

D1
D2 D3

On the other hand, here is an example which does satisfy (H).

◦ D = D3 =
{

(x, y, z) ∈ IR3
∣

∣ 0 < |(x, y, z)| < 2
}

. For example the circle x2 + y2 = 1,

z = 0 is the boundary of
{

(x, y, z) ∈ IR3
∣

∣ x2 + y2 + z2, z > 0
}

⊂ D. See the figure

on the right above.

This leaves the question of what happens when (H) is violated. We’ll just look at one

example, which however gives the flavour of the general theory.

The Punctured Disk in IR
2

The punctured disk is

D =
{

(x, y) ∈ IR2
∣

∣ 0 < |(x, y)| < 1
}

D

We’ll start by looking at one particular vector field, which passes the screening test, but

which cannot possibly be conservative. The field is

ΘΘΘ = − y
x2+y2 ı̂ıı+

x
x2+y2 ̂

with domain of definition D. We’ll first check that it passes the screening test:

∇∇∇×ΘΘΘ =
{

∂
∂x

(

x
x2+y2

)

− ∂
∂y

(

− y
x2+y2

)}

k̂ =
{(

1
x2+y2 − 2x2

(x2+y2)2

)

+
(

1
x2+y2 − 2y2

(x2+y2)2

)}

k̂

= 0
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Next we’ll check that it cannot be conservative. Denote by Cε the circle x2+y2 = ε2, with

counterclockwise orientation. Parametrize Cε by r(θ) = ε cos θ ı̂ıı+ε sin θ ̂ with 0 ≤ θ ≤ 2π.

Then
∫

Cε

ΘΘΘ · dr =

∫ 2π

0

ΘΘΘ
(

r(θ)
)

· dr
dθ
(θ) dθ

=

∫ 2π

0

(

− 1
ε sin θ ı̂ıı+

1
ε cos θ ̂

)

·
(

− ε sin θ ı̂ıı+ ε cos θ ̂
)

dθ

=

∫ 2π

0

dθ

= 2π

(1)

is not zero, so that ΘΘΘ cannot be conservative on the punctured disk.

Next we’ll check that it is locally conservative. That is, it can be written in the form

∇∇∇θ(x, y) near any point (x0, y0) in its domain. Define θ(x, y) to be the polar angle of (x, y)

with, for example, −π < θ < π. This θ is defined on all of D, except for the negative real

axis. The domain of definition, Dπ, is sketched on the left below. If (x0, y0) happens to lie

Dπ D0

on the negative real axis, just replace −π < θ < π by a different interval of length 2π, like

0 < θ < 2π. The domain of definition of θ would then change to the D0, sketched on the

right above. It’s now a simple matter to check that ∇∇∇θ(x, y) = ΘΘΘ(x, y) on the domain of

definition of θ. If x 6= 0, then tan θ(x, y) = y
x , and

∂
∂x tan θ(x, y) = − y

x2 =⇒
[

∂
∂xθ(x, y)

]

sec2 θ(x, y) = − y
x2

=⇒ ∂
∂xθ(x, y) = − y

x2 cos
2 θ(x, y) = − y

x2

x2

x2+y2 = − y
x2+y2

∂
∂y

tan θ(x, y) = 1
x

=⇒
[

∂
∂y

θ(x, y)
]

sec2 θ(x, y) = 1
x

=⇒ ∂
∂y

θ(x, y) = 1
x
cos2 θ(x, y) = 1

x
x2

x2+y2 = x
x2+y2

If x = 0, then we must have y 6= 0 and we can use cot θ(x, y) = x
y instead.

We are now ready to consider any vector field F on D that passes the screening test

∇∇∇× F = 0 on D. I claim that there is a function ϕ on D such that

F = αFΘΘΘ+∇∇∇ϕ where αF = 1
2π

∮

Cε

F · dr (2)

The significance of this claim is that it says that if a vector field on D passes the screening

test on D then either it is conservative (that’s the case if and only if αF = 0) or, if it fails

to be conservative, then it differs from a conservative field (namely ∇∇∇ϕ) only by a constant

(namely αF) times the fixed vector field ΘΘΘ. That is, there is only one nonconservative
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vector field on D that passes the screening test, up to multiplication by constants and

addition of conservative fields.

Observe that in the definition of αF, I did not specify the radius ε of the circle Cε

to be used for the integration curve. That’s because the answer to the integral does not

depend on the choice of ε. To see this, take any 0 < ε′ < ε < 1. Then the curve Cε − Cε′

is the boundary of S =
{

(x, y) ∈ IR2
∣

∣ ε′ < |(x, y)| < ε
}

, which is completely contained

in D. So, by Stokes’ theorem,

∮

Cε

F · dr−

∮

C
ε
′

F · dr =

∮

Cε−C
ε
′

F · dr =

∮

∂S

F · dr =

∫∫

S

∇∇∇× F · n̂ dS = 0

Finally to verify the claim (2), we check that the vector field G = F−αFΘΘΘ is conser-

vative on D. To do so, it suffices to check that
∮

C
G · dr = 0 for any closed curve C in D.

In fact we can restrict our attention to curves C that are simple, closed, counterclockwise

oriented curves on D. A curve is called simple if it does not cross itself. Closed curves

which are not simple can be split up into simple closed subcurves. And changing the

orientation of C just changes the sign of
∮

C
G · dr = 0, which does not affect whether it is

zero or not. So let C be a simple, closed, counterclockwise oriented curve in D. We need

to verify that
∮

C
G ·dr = 0. Any simple closed curve in IR2 divides IR2 into three mutually

disjoint subsets — C itself, the set of points inside C and the set of points outside C. Since

(0, 0) is not on C, it must be either inside C or outside C.

◦ Case 1: (0, 0) outside C. In this case C is the boundary of a set, S, which is completely

contained in D, namely all of the points inside C. So, by Stokes’ theorem,

∮

C

G · dr =

∮

∂S

(

F− αFΘΘΘ
)

· dr =

∫∫

S

∇∇∇× F · n̂ dS − αF

∫∫

S

∇∇∇×ΘΘΘ · n̂ dS = 0

◦ Case 2: (0, 0) inside C. Since (0, 0) is not on C, we can choose ε small enough that

the circle Cε lies completely inside C. Then the curve C −Cε is the boundary of a set,

S, which is completely contained in D, namely the part of D that is between Cε and

C. So, by Stokes’ theorem,

∮

C

G · dr−

∮

Cε

G · dr =

∮

C−Cε

G · dr =

∮

∂S

G · dr =

∫∫

S

∇∇∇×G · n̂ dS = 0

since ∇∇∇×G = ∇∇∇× F− αF∇∇∇×ΘΘΘ = 0 on D. Hence

∮

C

G · dr =

∮

Cε

G · dr =

∮

Cε

F · dr− αF

∮

Cε

ΘΘΘ · dr = 2παF − αF(2π) = 0

by the definition, (2), of αF and (1).

So G is conservative on D and F is of the form (2) on D.
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