
Complex Numbers and Exponentials

Definition and Basic Operations

A complex number is nothing more than a point in the xy–plane. The first component, x, of the complex

number (x, y) is called its real part and the second component, y, is called its imaginary part, even though

there is nothing imaginary about it. The sum and product of two complex numbers (x1, y1) and (x2, y2) is

defined by
(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2)

(x1, y1) (x2, y2) = (x1x2 − y1y2, x1y2 + x2y1)

respectively. We’ll get an effective memory aid for the definition of multiplication shortly. It is conventional

to use the notation x + iy (or in electrical engineering country x + jy) to stand for the complex number

(x, y). In other words, it is conventional to write x in place of (x, 0) and i in place of (0, 1). In this notation,

the sum and product of two complex numbers z1 = x1 + iy1 and z2 = x2 + iy2 is given by

z1 + z2 = (x1 + x2) + i(y1 + y2)

z1z2 = x1x2 − y1y2 + i(x1y2 + x2y1)

Addition and multiplication of complex numbers obey the familiar algebraic rules

z1 + z2 = z2 + z1 z1z2 = z2z1

z1 + (z2 + z3) = (z1 + z2) + z3 z1(z2z3) = (z1z2)z3

0 + z1 = z1 1z1 = z1

z1(z2 + z3) = z1z2 + z1z3 (z1 + z2)z3 = z1z3 + z2z3

The negative of any complex number z = x + iy is defined by −z = −x + (−y)i, and obeys z + (−z) = 0.

The inverse, z−1 or 1
z , of any complex number z = x+ iy, other than 0, is defined by 1

z z = 1. We shall see

below that it is given by the formula 1
z = x

x2+y2 + −y
x2+y2 i. The complex number i has the special property

i2 = (0 + 1i)(0 + 1i) = (0× 0− 1× 1) + i(0× 1 + 1× 0) = −1

To remember how to multiply complex numbers, you just have to supplement the familiar rules of the real

number system with i2 = −1. For example, if z = 1 + 2i and w = 3 + 4i, then

z + w = (1 + 2i) + (3 + 4i) = 4 + 6i

zw = (1 + 2i)(3 + 4i) = 3 + 4i+ 6i+ 8i2 = 3 + 4i+ 6i− 8 = −5 + 10i

Other Operations

The complex conjugate of z is denoted z̄ and is defined to be z̄ = x− iy . That is, to take the complex

conjugate, one replaces every i by −i. Note that

zz̄ = (x+ iy)(x− iy) = x2 − ixy + ixy + y2 = x2 + y2
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is always a positive real number. In fact, it is the square of the distance from x + iy (recall that this is the

point (x, y) in the xy–plane) to 0 (which is the point (0, 0)). The distance from z = x + iy to 0 is denoted

|z| and is called the absolute value, or modulus, of z . It is given by

|z| =
√

x2 + y2 =
√
zz̄

Since z1z2 = (x1 + iy1)(x2 + iy2) = (x1x2 − y1y2) + i(x1y2 + x2y1),

|z1z2| =
√

(x1x2 − y1y2)2 + (x1y2 + x2y1)2

=
√

x2
1x

2
2 − 2x1x2y1y2 + y21y

2
2 + x2

1y
2
2 + 2x1y2x2y1 + x2

2y
2
1

=
√

x2
1x

2
2 + y21y

2
2 + x2

1y
2
2 + x2

2y
2
1 =

√

(x2
1 + y21)(x

2
2 + y22)

= |z1||z2|

for all complex numbers z1, z2 .

Since |z|2 = zz̄, we have z
(

z̄
|z|2

)

= 1 for all complex numbers z 6= 0 . This says that the multiplicative

inverse, 1
z , of any nonzero complex number z = x+ iy is

z−1 = z̄
|z|2 = x−iy

x2+y2 = x
x2+y2 − y

x2+y2 i

This is the formula for 1
z given above. It is easy to divide a complex number by a real number. For example

11+2i
25 = 11

25 + 2
25 i

In general, there is a trick for rewriting any ratio of complex numbers as a ratio with a real denominator.

For example, suppose that we want to find 1+2i
3+4i . The trick is to multiply by 1 = 3−4i

3−4i . The number 3 − 4i

is the complex conjugate of 3 + 4i. Since (3 + 4i)(3− 4i) = 9− 12i+ 12i+ 16 = 25

1+2i
3+4i =

1+2i
3+4i

3−4i
3−4i =

(1+2i)(3−4i)
25 = 11+2i

25 = 11
25 + 2

25 i

The notations Re z and Im z stand for the real and imaginary parts of the complex number z, respectively.

If z = x+ iy (with x and y real) they are defined by

Re z = x Im z = y

Note that both Re z and Im z are real numbers. Just subbing in z̄ = x− iy gives

Re z = 1
2 (z + z̄) Im z = 1

2i(z − z̄)

The Complex Exponential

Definition and Basic Properties. For any complex number z = x+ iy the exponential ez , is defined by

ex+iy = ex cos y + iex sin y

In particular, eiy = cos y+ i sin y. This definition is not as mysterious as it looks. We could also define eiy

by the subbing x by iy in the Taylor series expansion ex =
∑∞

n=0
xn

n! .

eiy = 1 + iy + (iy)2

2! + (iy)3

3! + (iy)4

4! + (iy)5

5! + (iy)6

6! + · · ·
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The even terms in this expansion are

1 + (iy)2

2! + (iy)4

4! + (iy)6

6! + · · · = 1− y2

2! +
y4

4! −
y6

6! + · · · = cos y

and the odd terms in this expansion are

iy + (iy)3

3! + (iy)5

5! + · · · = i
(

y − y3

3! +
y5

5! + · · ·
)

= i sin y

For any two complex numbers z1 and z2

ez1ez2 = ex1(cos y1 + i sin y1)e
x2(cos y2 + i sin y2)

= ex1+x2(cos y1 + i sin y1)(cos y2 + i sin y2)

= ex1+x2 {(cos y1 cos y2 − sin y1 sin y2) + i(cos y1 sin y2 + cos y2 sin y1)}
= ex1+x2 {cos(y1 + y2) + i sin(y1 + y2)}
= e(x1+x2)+i(y1+y2)

= ez1+z2

so that the familiar multiplication formula also applies to complex exponentials. For any complex number

c = α+ iβ and real number t

ect = eαt+iβt = eαt[cos(βt) + i sin(βt)]

so that the derivative with respect to t

d
dte

ct = αeαt[cos(βt) + i sin(βt)] + eαt[−β sin(βt) + iβ cos(βt)]

= (α+ iβ)eαt[cos(βt) + i sin(βt)]

= cect

is also the familiar one.

Relationship with sin and cos. When θ is a real number

eiθ = cos θ + i sin θ

e−iθ = cos θ − i sin θ = eiθ

are complex numbers of modulus one. Solving for cos θ and sin θ (by adding and subtracting the two

equations)

cos θ = 1
2 (e

iθ + e−iθ) = Re eiθ

sin θ = 1
2i(e

iθ − e−iθ) = Im eiθ

These formulae make it easy derive trig identities. For example

cos θ cosφ = 1
4 (e

iθ + e−iθ)(eiφ + e−iφ)

= 1
4 (e

i(θ+φ) + ei(θ−φ) + ei(−θ+φ) + e−i(θ+φ))

= 1
4 (e

i(θ+φ) + e−i(θ+φ) + ei(θ−φ) + ei(−θ+φ))

= 1
2

(

cos(θ + φ) + cos(θ − φ)
)

and, using (a+ b)3 = a3 + 3a2b + 3ab2 + b3,

sin3 θ = − 1
8i

(

eiθ − e−iθ
)3

= − 1
8i

(

ei3θ − 3eiθ + 3e−iθ − e−i3θ
)

= 3
4

1
2i

(

eiθ − e−iθ
)

− 1
4

1
2i

(

ei3θ − e−i3θ
)

= 3
4 sin θ − 1

4 sin(3θ)
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and
cos(2θ) = Re ei2θ = Re

(

eiθ
)2

= Re
(

cos θ + i sin θ
)2

= Re
(

cos2 θ + 2i sin θ cos θ − sin2 θ
)

= cos2 θ − sin2 θ

Polar Coordinates. Let z = x + iy be any complex number. Writing (x, y) in polar coordinates in the

usual way gives x = r cos θ, y = r sin θ and

x+ iy = r cos θ + ir sin θ = reiθ

y

x

x+ iy = reiθ

θ

r

In particular

y

x

π
2

−π
2

π 1=(1,0)(−1,0)=−1

i=(0,1)

−i=(0,−1)

1 = ei0 = e2πi = e2kπi for k = 0,±1,±2, · · ·
−1 = eiπ = e3πi = e(1+2k)πi for k = 0,±1,±2, · · ·
i = eiπ/2 = e

5

2
πi = e(

1

2
+2k)πi for k = 0,±1,±2, · · ·

−i = e−iπ/2 = e
3

2
πi = e(−

1

2
+2k)πi for k = 0,±1,±2, · · ·

The polar coordinate θ = tan−1 y
x associated with the complex number z = x+ iy is also called the argument

of z.

The polar coordinate representation makes it easy to find square roots, third roots and so on. Fix any

positive integer n. The nth roots of unity are, by definition, all solutions z of

zn = 1

Writing z = reiθ

rnenθi = 1e0i

The polar coordinates (r, θ) and (r′, θ′) represent the same point in the xy–plane if and only if r = r′ and

θ = θ′ + 2kπ for some integer k. So zn = 1 if and only if rn = 1, i.e. r = 1, and nθ = 2kπ for some integer

k. The nth roots of unity are all complex numbers e2πi
k

n with k integer. There are precisely n distinct nth

roots of unity because e2πi
k

n = e2πi
k
′

n if and only if 2π k
n − 2πik

′

n = 2π k−k′

n is an integer multiple of 2π. That

is, if and only if k − k′ is an integer multiple of n. The n distinct nth roots of unity are

1 , e2πi
1

n , e2πi
2

n , e2πi
3

n , · · · , e2πi
n−1

n

y

x
1=e2πi

0

6

e2πi
1

6e2πi
2

6

e2πi
3

6 =−1

e2πi
4

6 e2πi
5

6
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Exploiting Complex Exponentials in Calculus Computations

Example 1
∫

ex cosx dx = 1
2

∫

ex
[

eix + e−ix
]

dx = 1
2

∫

[

e(1+i)x + e(1−i)x
]

dx

= 1
2

[

1
1+ie

(1+i)x + 1
1−ie

(1−i)x
]

+ C

This form of the indefinite integral looks a little wierd because of the i’s. But it is correct and it is purely

real, despite the i’s, because 1
1−ie

(1−i)x is the complex conjugate of 1
1+ie

(1+i)x. We can convert the indefinite

integral into a more familar form just by subbing back in e±ix = cosx± i sinx, 1
1+i =

1−i
(1+i)(1−i) = 1−i

2 and

1
1−i =

1
1+i =

1+i
2 .

∫

ex cosx dx = 1
2e

x
[

1
1+ie

ix + 1
1−ie

−ix
]

+ C

= 1
2e

x
[

1−i
2 (cosx+ i sinx) + 1+i

2 (cosx− i sinx)
]

+ C

= 1
2e

x cosx+ 1
2e

x sinx+ C

Example 2 Using (a+ b)4 = a4 + 4a3b+ 6a2b2 + 4ab3 + b4,
∫

cos4 x dx = 1
24

∫

[

eix + e−ix
]4

dx = 1
24

∫

[

e4ix + 4e2ix + 6 + 4e−2ix + e−4ix
]

dx

= 1
24

[

1
4ie

4ix + 4
2ie

2ix + 6x+ 4
−2ie

−2ix + 1
−4ie

−4ix
]

+ C

= 1
24

[

1
2

1
2i (e

4ix − e−4ix) + 4
2i (e

2ix − e−2ix) + 6x
]

+ C

= 1
24

[

1
2 sin 4x+ 4 sin 2x+ 6x

]

+ C

= 1
32 sin 4x+ 1

4 sin 2x+ 3
8x+ C

Example 3 We shall now guess a solution to the differential equation

y′′ + 2y′ + 3y = cos t (1)

Equations like this arise, for example, in the study of the RLC circuit. We shall simplify the computation

by exploiting that cos t = Re eit. First, we shall guess a function Y (t) obeying

Y ′′ + 2Y ′ + 3Y = eit (2)

Then, taking complex conjugates,

Ȳ ′′ + 2Ȳ ′ + 3Ȳ = e−it (2̄)

and, adding 1
2 (2) and

1
2 (2̄) together will give

(ReY )′′ + 2(ReY )′ + 3(ReY ) = Re eit = cos t

which shows that ReY (t) is a solution to (1). Let’s try Y (t) = Aeit. This is a solution of (2) if and only if

d2

dt2

(

Aeit
)

+ 2 d
dt

(

Aeit
)

+ 3Aeit = eit

⇐⇒ (2 + 2i)Aeit = eit

⇐⇒ A = 1
2+2i

So we have found a solution to (2) and Re eit

2+2i is a solution to (1). To simplify this, write 2 + 2i in polar

coordinates. So

2 + 2i = 2
√
2ei

π

4 ⇒ eit

2+2i =
eit

2
√
2ei

π

4

= 1
2
√
2
ei(t−

π

4
) ⇒ Re eit

2+2i =
1

2
√
2
cos(t− π

4 )
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Sketching Complex Numbers as Vectors

Algebraic expressions involving complex numbers may be evaluated geometrically by exploiting the

following two observations.

◦ (Addition and subtraction) A complex number is nothing more than a point in the xy–plane. So we

may identify the complex number A = a + ib with the vector whose tail is at the origin and whose

head is at the point (a, b). Similarly, we may identify the complex number C = c+ id with the vector

whose tail is at the origin and whose head is at the point (c, d). Those two vectors form two sides of a

parallelogram. The vector for the sum A+C = (a+c)+ i(b+d) is that from the origin to the diagonally

opposite corner of the parallelogram. The vector for the difference A − C = (a − c) + i(b − d) has its

tail at C and its head at A.

A

C

A+ C

A

C
A− C

◦ (Multiplication and Division) To multiply or divide two complex numbers, write them in their polar

coordinate forms A = reiθ , C = ρeiϕ. So r and ρ are the lengths of A and C, respectively, and θ and

ϕ are the angles from the positive x–axis to A and C, respectively. Then AC = rρei(θ+ϕ). This vector

has length equal to the product of the lengths of A and C. The angle from the positive x–axis to AC

is the sum of the angles θ and ϕ. And A
C = r

ρe
i(θ−ϕ). This vector has length equal to the ratio of the

lengths of A and C. The angle from the positive x–axis to AC is the difference of the angles θ and ϕ.

A

C

AC

θ

φ

θ + φ

A

C

A/C

θ

φ

θ − φ
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