The Contraction Mapping Theorem

Theorem (The Contraction Mapping Theorem)

Fix any a > 0. Let $B_a = \{ \vec{x} \in \mathbb{R}^d \mid ||\vec{x}|| < a \}$ denote the open ball of radius⁽¹⁾ a centred on the origin in \mathbb{R}^d . If the function

$$\vec{g}: B_a \to \mathbb{R}^d$$

obeys

(H1) there is a constant G < 1 such that $\|\vec{g}(\vec{x}) - \vec{g}(\vec{y})\| \le G \|\vec{x} - \vec{y}\|$ for all $\vec{x}, \vec{y} \in B_a$ (H2) $\|\vec{g}(\vec{0})\| < (1-G)a$

then the equation

 $\vec{x} = \vec{g}(\vec{x})$

has exactly one solution.

Discussion of hypothesis (H1): Hypothesis (H1) is responsible for the word "Contraction" in the name of the theorem. Because G < 1 (and it is crucial that G < 1) the distance between the images $\vec{g}(\vec{x})$ and $\vec{g}(\vec{y})$ of \vec{x} and \vec{y} is smaller than the original distance between \vec{x} and \vec{y} . Thus the function g contracts distances. Note that, when the dimension d = 1, and $x, y \in B_a = (-a, a)$, then

$$|g(x) - g(y)| = \left| \int_{x}^{y} g'(t) \, dt \right| \le \left| \int_{x}^{y} |g'(t)| \, dt \right| \le \left| \int_{x}^{y} \sup_{t' \in B_{a}} |g'(t')| \, dt \right| = |x - y| \sup_{t' \in B_{a}} |g'(t')|$$

For a once continuously differentiable function, the smallest G that one can pick and still have $|g(x) - g(y)| \leq G|x - y|$ for all x, y is $G = \sup_{t' \in B_a} |g'(t')|$. In this case (H1) comes down to the requirement that there exist a constant G < 1 such that $|g'(t)| \leq G < 1$ for all $t' \in B_a$. For dimensions d > 1, one has a whole matrix $\mathcal{G}(\vec{x}) = \left[\frac{\partial g_i}{\partial x_j}(\vec{x})\right]_{1 \leq i,j \leq d}$ of first derivatives. There is a measure of the size of this matrix, called the norm of the matrix and denoted $\|\mathcal{G}(\vec{x})\|$ such that, for all $\vec{x}, \vec{y} \in B_a$

$$\left\|\vec{g}(\vec{x}) - \vec{g}(\vec{y})\right\| \le \left\|\vec{x} - \vec{y}\right\| \sup_{\vec{t} \in B_a} \left\|\mathcal{G}(\vec{t})\right\|$$

⁽¹⁾ We are using $\|\vec{x}\| = \sqrt{x_1^2 + x_2^2 + \dots + x_d^2}$ to denote the norm of the vector \vec{x} .

Once again (H1) comes down to $\|\mathcal{G}(\vec{t})\| \leq G < 1$ for all $\vec{t} \in B_a$.

Roughly speaking, (H1) forces the derivative of \vec{g} to be sufficiently small, which forces the derivative of $\vec{x} - \vec{g}(\vec{x})$ to be bounded away from zero.

If we were to relax (H1) to $G \leq 1$, the theorem would fail. For example, g(x) = x obeys |g(x) - g(y)| = |x - y| for all x and y. So G would be one in this case. But every x obeys g(x) = x, so the solution is certainly not unique.

Discussion of hypothesis (H2): If \vec{g} only takes values that are outside of B_a , then $\vec{x} = \vec{g}(\vec{x})$ cannot possibly have any solutions. So there has to be a requirement that $\vec{g}(\vec{x})$ lies in B_a for at least some values of $\vec{x} \in B_a$. Our hypotheses are actually somewhat stronger than this:

$$\|\vec{g}(\vec{x})\| = \|\vec{g}(\vec{x}) - \vec{g}(\vec{0}) + \vec{g}(\vec{0})\| \le \|\vec{g}(\vec{x}) - \vec{g}(\vec{0})\| + \|\vec{g}(\vec{0})\| \le G\|\vec{x} - \vec{0}\| + (1 - G)a$$

by (H1) and (H2). So, for all \vec{x} in B_a , that is, all \vec{x} with $\|\vec{x}\| < a$,

$$\|\vec{g}(\vec{x})\| < Ga + (1 - G)a = a$$

With our hypotheses $\vec{g} : B_a \to B_a$. Roughly speaking, (H2) requires that $\vec{g}(\vec{x})$ be sufficiently small for at least one \vec{x} .

If we were to relax (H2) to $\|\vec{g}(\vec{0})\| \leq (1-G)a$, the theorem would fail. For example, pick any a > 0, 0 < G < 1 and define $g : B_a \to \mathbb{R}$ by g(x) = a(1-G) + Gx. Then g'(x) = G for all x and g(0) = a(1-G). For this g,

$$g(x) = x \quad \iff \quad a(1-G) + Gx = x \quad \iff \quad a(1-G) = (1-G)x \quad \iff \quad x = a$$

As x = a is not in the domain of definition of g, there is no solution.

Proof that there is at most one solution: Suppose that \vec{x}^* and \vec{y}^* are two solutions. Then

$$\vec{x}^{*} = \vec{g}(\vec{x}^{*}), \ \vec{y}^{*} = \vec{g}(\vec{y}^{*}) \implies \|\vec{x}^{*} - \vec{y}^{*}\| = \|\vec{g}(\vec{x}^{*}) - \vec{g}(\vec{y}^{*})\|$$

$$\stackrel{(\text{H1})}{\Longrightarrow} \|\vec{x}^{*} - \vec{y}^{*}\| \le G\|\vec{x}^{*} - \vec{y}^{*}\|$$

$$\implies (1 - G)\|\vec{x}^{*} - \vec{y}^{*}\| = 0$$

As G < 1, 1 - G is nonzero and $\|\vec{x}^* - \vec{y}^*\|$ must be zero. That is, \vec{x}^* and \vec{y}^* must be the same.

Proof that there is at least one solution: Set

 $\vec{x}_0 = 0$ $\vec{x}_1 = \vec{g}(\vec{x}_0)$ $\vec{x}_2 = \vec{g}(\vec{x}_1)$ \cdots $\vec{x}_n = \vec{g}(\vec{x}_{n-1})$ \cdots

© Joel Feldman. 2016. All rights reserved. February 22, 2016 The Contraction Mapping Theorem

We showed in "Significance of hypothesis (H2)" that $\vec{g}(\vec{x})$ is in B_a for all \vec{x} in B_a . So $\vec{x}_0, \vec{x}_1, \vec{x}_2, \cdots$ are all in B_a . So the definition $\vec{x}_n = \vec{g}(\vec{x}_{n-1})$ is legitimate. We shall show that the sequence $\vec{x}_0, \vec{x}_1, \vec{x}_2, \cdots$ converges to some vector \vec{x}^* . Since \vec{g} is continuous, this vector will obey

$$\vec{x}^* = \lim_{n \to \infty} \vec{x}_n = \lim_{n \to \infty} \vec{g}(\vec{x}_{n-1}) = \vec{g}\left(\lim_{n \to \infty} \vec{x}_{n-1}\right) = \vec{g}(\vec{x}^*)$$

In other words, \vec{x}^* is a solution of $\vec{x} = \vec{g}(\vec{x})$.

To prove that the sequence converges, we first observe that, applying (H1) numerous times,

$$\begin{aligned} \|\vec{x}_{m} - \vec{x}_{m-1}\| &= \left\|\vec{g}(\vec{x}_{m-1}) - \vec{g}(\vec{x}_{m-2})\right\| \\ &\leq G \|\vec{x}_{m-1} - \vec{x}_{m-2}\| &= G \|\vec{g}(\vec{x}_{m-2}) - \vec{g}(\vec{x}_{m-3})\| \\ &\leq G^{2} \|\vec{x}_{m-2} - \vec{x}_{m-3}\| &= G^{2} \|\vec{g}(\vec{x}_{m-3}) - \vec{g}(\vec{x}_{m-4})\| \\ &\vdots \\ &\leq G^{m-1} \|\vec{x}_{1} - \vec{x}_{0}\| &= G^{m-1} \|\vec{g}(\vec{0})\| \end{aligned}$$

Remember that G < 1. So the distance $\|\vec{x}_m - \vec{x}_{m-1}\|$ between the $(m-1)^{\text{st}}$ and m^{th} entries in the sequence gets really small for m as large. As

$$\vec{x}_n = \vec{x}_0 + (\vec{x}_1 - \vec{x}_0) + (\vec{x}_2 - \vec{x}_1) + \dots + (\vec{x}_n - \vec{x}_{n-1}) = \sum_{m=1}^n (\vec{x}_m - \vec{x}_{m-1})$$

(recall that $\vec{x}_0 = \vec{0}$) it suffices to prove that $\sum_{m=1}^n (\vec{x}_m - \vec{x}_{m-1})$ converges as $n \to \infty$. To do so it suffices to prove that $\sum_{m=1}^n ||\vec{x}_m - \vec{x}_{m-1}||$ converges as $n \to \infty$, which we do now.

$$\sum_{m=1}^{n} \left\| \vec{x}_m - \vec{x}_{m-1} \right\| \le \sum_{m=1}^{n} G^{m-1} \| \vec{g}(\vec{0}) \| = \frac{1 - G^n}{1 - G} \| \vec{g}(\vec{0}) \|$$

As *n* tends to ∞ , G^n converges to zero (because $0 \le G < 1$) and $\frac{1-G^n}{1-G} \|\vec{g}(\vec{0})\|$ converges to $\frac{1}{1-G} \|\vec{g}(\vec{0})\|$.

An Application — The Implicit Function Theorem

Now consider some function $\vec{f}(\vec{x},\vec{y})$ with \vec{x} running over \mathbb{R}^n , \vec{y} running over \mathbb{R}^d and \vec{f} taking values in \mathbb{R}^d . Suppose that we have one point (\vec{x}_0, \vec{y}_0) on the surface $\vec{f}(\vec{x}, \vec{y}) = 0$. In other words, suppose that $\vec{f}(\vec{x}_0, \vec{y}_0) = 0$. And suppose that we wish to solve $\vec{f}(\vec{x}, \vec{y}) = 0$ for $\vec{y} = \vec{y}(\vec{x})$ near (\vec{x}_0, \vec{y}_0) . First observe that for each fixed \vec{x} , $\vec{f}(\vec{x}, \vec{y}) = 0$ is a system of d equations in d unknowns. So at least the number of unknowns matches the number of equations. Denote by A the $d \times d$ matrix $\left[\frac{\partial f_i}{\partial y_j}(\vec{x}_0, \vec{y}_0)\right]_{1 \le i,j \le d}$ of first partial \vec{y} derivatives at (\vec{x}_0, \vec{y}_0) . Suppose that this matrix has an inverse. When d = 1, the invertibility of A just means that $\frac{\partial f}{\partial y}(x_0, \vec{y}_0) \neq 0$. For d > 1, it just means that 0 is not an eigenvalue of A. We shall now show that, under the hypothesis that A is invertible, it is indeed possible to solve for \vec{y} as a function of \vec{x} at least for \vec{x} close to \vec{x}_0 .

We start by reworking the equation $f(\vec{x}, \vec{y}) = 0$ into a form that we can apply the Contraction Mapping Theorem to.

$$\vec{f}(\vec{x},\vec{y}) = 0 \quad \iff \quad A^{-1}\vec{f}(\vec{x},\vec{y}) = 0 \quad \iff \quad \vec{y} - \vec{y}_0 - A^{-1}\vec{f}(\vec{x},\vec{y}) = \vec{y} - \vec{y}_0$$

Rename $\vec{y} - \vec{y}_0 = \vec{z}$ and define

$$\vec{g}(\vec{x}, \vec{z}) = \vec{z} - A^{-1} \vec{f}(\vec{x}, \vec{z} + \vec{y}_0)$$

Then

$$\vec{f}(\vec{x}, \vec{y}) = 0 \quad \iff \quad \vec{y} = \vec{y}_0 + \vec{z} \text{ and } \vec{g}(\vec{x}, \vec{z}) = \vec{z}$$

Now apply the Contraction Mapping Theorem with \vec{x} viewed as a parameter. That is, fix any \vec{x} sufficiently near \vec{x}_0 . Then $\vec{g}(\vec{x}, \vec{z})$ is a function of \vec{z} only and one may use the Contraction Mapping Theorem to solve $\vec{z} = \vec{g}(\vec{x}, \vec{z})$.

We must of course check that the hypotheses are satisfied. Observe first, that when $\vec{z} = \vec{0}$ and $\vec{x} = \vec{x}_0$, the matrix $\left[\frac{\partial g_i}{\partial z_j}(\vec{x}_0, \vec{0})\right]_{1 \le i,j \le d}$ of first derivatives of \vec{g} is exactly $1 - A^{-1}A$. The identity matrix 1 arises from differentiating the term \vec{z} of \vec{g} and $-A^{-1}A$ arises from differentiating $-A^{-1}\vec{f}(\vec{x}_0, \vec{z} + \vec{y}_0)$. So $\left[\frac{\partial g_i}{\partial z_j}(\vec{x}_0, \vec{0})\right]_{1 \le i,j \le d}$ is exactly the zero matrix. For (\vec{x}, \vec{z}) sufficiently close to $(\vec{x}_0, \vec{0})$, the matrix $\left[\frac{\partial g_i}{\partial z_j}(\vec{x}, \vec{z})\right]_{1 \le i,j \le d}$ will, by continuity, be small enough that (H1) is satisfied. Also observe that $\vec{g}(\vec{x}_0, \vec{0}) = -A^{-1}\vec{f}(\vec{x}_0, \vec{y}_0) = \vec{0}$. So, once again, by continuity, if \vec{x} is sufficiently close to $\vec{x}_0, \vec{g}(\vec{x}, \vec{0})$ will be small enough that (H2) is satisfied.

We conclude from the Contraction Mapping Theorem that, assuming A is invertible, $\vec{f}(\vec{x}, \vec{y}) = 0$ has exactly one solution, $\vec{y}(\vec{x})$, near \vec{y}_0 for each \vec{x} sufficiently near \vec{x}_0 .