The Contraction Mapping Theorem

Theorem (The Contraction Mapping Theorem)

Fix any $a>0$. Let $B_{a}=\left\{\vec{x} \in \mathbb{R}^{d} \mid\|\vec{x}\|<a\right\}$ denote the open ball of radius ${ }^{(1)}$ a centred on the origin in \mathbb{R}^{d}. If the function

$$
\vec{g}: B_{a} \rightarrow \mathbb{R}^{d}
$$

obeys
(H1) there is a constant $G<1$ such that $\|\vec{g}(\vec{x})-\vec{g}(\vec{y})\| \leq G\|\vec{x}-\vec{y}\| \quad$ for all $\vec{x}, \vec{y} \in B_{a}$
(H2) $\|\vec{g}(\overrightarrow{0})\|<(1-G) a$
then the equation

$$
\vec{x}=\vec{g}(\vec{x})
$$

has exactly one solution.

Discussion of hypothesis (H1): Hypothesis (H1) is responsible for the word "Contraction" in the name of the theorem. Because $G<1$ (and it is crucial that $G<1$) the distance between the images $\vec{g}(\vec{x})$ and $\vec{g}(\vec{y})$ of \vec{x} and \vec{y} is smaller than the original distance between \vec{x} and \vec{y}. Thus the function g contracts distances. Note that, when the dimension $d=1$, and $x, y \in B_{a}=(-a, a)$, then

$$
|g(x)-g(y)|=\left|\int_{x}^{y} g^{\prime}(t) d t\right| \leq\left|\int_{x}^{y}\right| g^{\prime}(t)|d t| \leq\left|\int_{x}^{y} \sup _{t^{\prime} \in B_{a}}\right| g^{\prime}\left(t^{\prime}\right)|d t|=|x-y| \sup _{t^{\prime} \in B_{a}}\left|g^{\prime}\left(t^{\prime}\right)\right|
$$

For a once continuously differentiable function, the smallest G that one can pick and still have $|g(x)-g(y)| \leq G|x-y|$ for all x, y is $G=\sup _{t^{\prime} \in B_{a}}\left|g^{\prime}\left(t^{\prime}\right)\right|$. In this case (H1) comes down to the requirement that there exist a constant $G<1$ such that $\left|g^{\prime}(t)\right| \leq G<1$ for all $t^{\prime} \in B_{a}$. For dimensions $d>1$, one has a whole matrix $\mathcal{G}(\vec{x})=\left[\frac{\partial g_{i}}{\partial x_{j}}(\vec{x})\right]_{1 \leq i, j \leq d}$ of first derivatives. There is a measure of the size of this matrix, called the norm of the matrix and denoted $\|\mathcal{G}(\vec{x})\|$ such that, for all $\vec{x}, \vec{y} \in B_{a}$

$$
\|\vec{g}(\vec{x})-\vec{g}(\vec{y})\| \leq\|\vec{x}-\vec{y}\| \sup _{\vec{t} \in B_{a}} \| \mathcal{G}(\vec{t} \|
$$

[^0]Once again (H1) comes down to $\|\mathcal{G}(\vec{t})\| \leq G<1$ for all $\vec{t} \in B_{a}$.
Roughly speaking, (H1) forces the derivative of \vec{g} to be sufficiently small, which forces the derivative of $\vec{x}-\vec{g}(\vec{x})$ to be bounded away from zero.

If we were to relax (H1) to $G \leq 1$, the theorem would fail. For example, $g(x)=x$ obeys $|g(x)-g(y)|=|x-y|$ for all x and y. So G would be one in this case. But every x obeys $g(x)=x$, so the solution is certainly not unique.

Discussion of hypothesis (H2): If \vec{g} only takes values that are outside of B_{a}, then $\vec{x}=\vec{g}(\vec{x})$ cannot possibly have any solutions. So there has to be a requirement that $\vec{g}(\vec{x})$ lies in B_{a} for at least some values of $\vec{x} \in B_{a}$. Our hypotheses are actually somewhat stronger than this:

$$
\|\vec{g}(\vec{x})\|=\|\vec{g}(\vec{x})-\vec{g}(\overrightarrow{0})+\vec{g}(\overrightarrow{0})\| \leq\|\vec{g}(\vec{x})-\vec{g}(\overrightarrow{0})\|+\|\vec{g}(\overrightarrow{0})\| \leq G\|\vec{x}-\overrightarrow{0}\|+(1-G) a
$$

by (H1) and (H2). So, for all \vec{x} in B_{a}, that is, all \vec{x} with $\|\vec{x}\|<a$,

$$
\|\vec{g}(\vec{x})\|<G a+(1-G) a=a
$$

With our hypotheses $\vec{g}: B_{a} \rightarrow B_{a}$. Roughly speaking, (H2) requires that $\vec{g}(\vec{x})$ be sufficiently small for at least one \vec{x}.

If we were to relax $(\mathrm{H} 2)$ to $\|\vec{g}(\overrightarrow{0})\| \leq(1-G) a$, the theorem would fail. For example, pick any $a>0,0<G<1$ and define $g: B_{a} \rightarrow \mathbb{R}$ by $g(x)=a(1-G)+G x$. Then $g^{\prime}(x)=G$ for all x and $g(0)=a(1-G)$. For this g,

$$
g(x)=x \quad \Longleftrightarrow \quad a(1-G)+G x=x \quad \Longleftrightarrow \quad a(1-G)=(1-G) x \quad \Longleftrightarrow \quad x=a
$$

As $x=a$ is not in the domain of definition of g, there is no solution.

Proof that there is at most one solution: Suppose that \vec{x}^{*} and \vec{y}^{*} are two solutions. Then

$$
\begin{aligned}
\vec{x}^{*}=\vec{g}\left(\vec{x}^{*}\right), \vec{y}^{*}=\vec{g}\left(\vec{y}^{*}\right) & \Longrightarrow\left\|\vec{x}^{*}-\vec{y}^{*}\right\|=\left\|\vec{g}\left(\vec{x}^{*}\right)-\vec{g}\left(\vec{y}^{*}\right)\right\| \\
& \xlongequal{(\mathrm{H} 1)}\left\|\vec{x}^{*}-\vec{y}^{*}\right\| \leq G\left\|\vec{x}^{*}-\vec{y}^{*}\right\| \\
& \Longrightarrow \quad(1-G)\left\|\vec{x}^{*}-\vec{y}^{*}\right\|=0
\end{aligned}
$$

As $G<1,1-G$ is nonzero and $\left\|\vec{x}^{*}-\vec{y}^{*}\right\|$ must be zero. That is, \vec{x}^{*} and \vec{y}^{*} must be the same.

Proof that there is at least one solution: Set

$$
\vec{x}_{0}=0 \quad \vec{x}_{1}=\vec{g}\left(\vec{x}_{0}\right) \quad \vec{x}_{2}=\vec{g}\left(\vec{x}_{1}\right) \quad \ldots \quad \vec{x}_{n}=\vec{g}\left(\vec{x}_{n-1}\right) \quad \ldots
$$

We showed in "Significance of hypothesis (H2)" that $\vec{g}(\vec{x})$ is in B_{a} for all \vec{x} in B_{a}. So $\vec{x}_{0}, \vec{x}_{1}, \vec{x}_{2}, \cdots$ are all in B_{a}. So the definition $\vec{x}_{n}=\vec{g}\left(\vec{x}_{n-1}\right)$ is legitimate. We shall show that the sequence $\vec{x}_{0}, \vec{x}_{1}, \vec{x}_{2}, \cdots$ converges to some vector \vec{x}^{*}. Since \vec{g} is continuous, this vector will obey

$$
\vec{x}^{*}=\lim _{n \rightarrow \infty} \vec{x}_{n}=\lim _{n \rightarrow \infty} \vec{g}\left(\vec{x}_{n-1}\right)=\vec{g}\left(\lim _{n \rightarrow \infty} \vec{x}_{n-1}\right)=\vec{g}\left(\vec{x}^{*}\right)
$$

In other words, \vec{x}^{*} is a solution of $\vec{x}=\vec{g}(\vec{x})$.
To prove that the sequence converges, we first observe that, applying (H1) numerous times,

$$
\begin{array}{ll}
\left\|\vec{x}_{m}-\vec{x}_{m-1}\right\| & =\left\|\vec{g}\left(\vec{x}_{m-1}\right)-\vec{g}\left(\vec{x}_{m-2}\right)\right\| \\
\leq G\left\|\vec{x}_{m-1}-\vec{x}_{m-2}\right\| & =G\left\|\vec{g}\left(\vec{x}_{m-2}\right)-\vec{g}\left(\vec{x}_{m-3}\right)\right\| \\
\leq G^{2}\left\|\vec{x}_{m-2}-\vec{x}_{m-3}\right\| & =G^{2}\left\|\vec{g}\left(\vec{x}_{m-3}\right)-\vec{g}\left(\vec{x}_{m-4}\right)\right\| \\
\vdots & \\
\leq G^{m-1}\left\|\vec{x}_{1}-\vec{x}_{0}\right\| & =G^{m-1}\|\vec{g}(\overrightarrow{0})\|
\end{array}
$$

Remember that $G<1$. So the distance $\left\|\vec{x}_{m}-\vec{x}_{m-1}\right\|$ between the $(m-1)^{\text {st }}$ and $m^{\text {th }}$ entries in the sequence gets really small for m as large. As

$$
\vec{x}_{n}=\vec{x}_{0}+\left(\vec{x}_{1}-\vec{x}_{0}\right)+\left(\vec{x}_{2}-\vec{x}_{1}\right)+\cdots+\left(\vec{x}_{n}-\vec{x}_{n-1}\right)=\sum_{m=1}^{n}\left(\vec{x}_{m}-\vec{x}_{m-1}\right)
$$

(recall that $\vec{x}_{0}=\overrightarrow{0}$) it suffices to prove that $\sum_{m=1}^{n}\left(\vec{x}_{m}-\vec{x}_{m-1}\right)$ converges as $n \rightarrow \infty$. To do so it suffices to prove that $\sum_{m=1}^{n}\left\|\vec{x}_{m}-\vec{x}_{m-1}\right\|$ converges as $n \rightarrow \infty$, which we do now.

$$
\sum_{m=1}^{n}\left\|\vec{x}_{m}-\vec{x}_{m-1}\right\| \leq \sum_{m=1}^{n} G^{m-1}\|\vec{g}(\overrightarrow{0})\|=\frac{1-G^{n}}{1-G}\|\vec{g}(\overrightarrow{0})\|
$$

As n tends to ∞, G^{n} converges to zero (because $0 \leq G<1$) and $\frac{1-G^{n}}{1-G}\|\vec{g}(\overrightarrow{0})\|$ converges to $\frac{1}{1-G}\|\vec{g}(\overrightarrow{0})\|$.

An Application - The Implicit Function Theorem

Now consider some function $\vec{f}(\vec{x}, \vec{y})$ with \vec{x} running over \mathbb{R}^{n}, \vec{y} running over \mathbb{R}^{d} and \vec{f} taking values in \mathbb{R}^{d}. Suppose that we have one point $\left(\vec{x}_{0}, \vec{y}_{0}\right)$ on the surface $\vec{f}(\vec{x}, \vec{y})=0$. In other words, suppose that $\vec{f}\left(\vec{x}_{0}, \vec{y}_{0}\right)=0$. And suppose that we wish to solve $\vec{f}(\vec{x}, \vec{y})=0$ for $\vec{y}=\vec{y}(\vec{x})$ near $\left(\vec{x}_{0}, \vec{y}_{0}\right)$. First observe that for each fixed $\vec{x}, \vec{f}(\vec{x}, \vec{y})=0$ is a system of d equations in d unknowns. So at least the number of unknowns matches the number of equations.

Denote by A the $d \times d$ matrix $\left[\frac{\partial f_{i}}{\partial y_{j}}\left(\vec{x}_{0}, \vec{y}_{0}\right)\right]_{1 \leq i, j \leq d}$ of first partial \vec{y} derivatives at $\left(\vec{x}_{0}, \vec{y}_{0}\right)$. Suppose that this matrix has an inverse. When $d=1$, the invertibility of A just means that $\frac{\partial f}{\partial y}\left(x_{0}, \vec{y}_{0}\right) \neq 0$. For $d>1$, it just means that 0 is not an eigenvalue of A. We shall now show that, under the hypothesis that A is invertible, it is indeed possible to solve for \vec{y} as a function of \vec{x} at least for \vec{x} close to \vec{x}_{0}.

We start by reworking the equation $f(\vec{x}, \vec{y})=0$ into a form that we can apply the Contraction Mapping Theorem to.

$$
\vec{f}(\vec{x}, \vec{y})=0 \quad \Longleftrightarrow \quad A^{-1} \vec{f}(\vec{x}, \vec{y})=0 \quad \Longleftrightarrow \quad \vec{y}-\vec{y}_{0}-A^{-1} \vec{f}(\vec{x}, \vec{y})=\vec{y}-\vec{y}_{0}
$$

Rename $\vec{y}-\vec{y}_{0}=\vec{z}$ and define

$$
\vec{g}(\vec{x}, \vec{z})=\vec{z}-A^{-1} \vec{f}\left(\vec{x}, \vec{z}+\vec{y}_{0}\right)
$$

Then

$$
\vec{f}(\vec{x}, \vec{y})=0 \quad \Longleftrightarrow \quad \vec{y}=\vec{y}_{0}+\vec{z} \text { and } \vec{g}(\vec{x}, \vec{z})=\vec{z}
$$

Now apply the Contraction Mapping Theorem with \vec{x} viewed as a parameter. That is, fix any \vec{x} sufficiently near \vec{x}_{0}. Then $\vec{g}(\vec{x}, \vec{z})$ is a function of \vec{z} only and one may use the Contraction Mapping Theorem to solve $\vec{z}=\vec{g}(\vec{x}, \vec{z})$.

We must of course check that the hypotheses are satisfied. Observe first, that when $\vec{z}=\overrightarrow{0}$ and $\vec{x}=\vec{x}_{0}$, the matrix $\left[\frac{\partial g_{i}}{\partial z_{j}}\left(\vec{x}_{0}, \overrightarrow{0}\right)\right]_{1 \leq i, j \leq d}$ of first derivatives of \vec{g} is exactly $\mathbb{1}-A^{-1} A$. The identity matrix $\mathbb{1}$ arises from differentiating the term \vec{z} of \vec{g} and $-A^{-1} A$ arises from differentiating $-A^{-1} \vec{f}\left(\vec{x}_{0}, \vec{z}+\vec{y}_{0}\right)$. So $\left[\frac{\partial g_{i}}{\partial z_{j}}\left(\vec{x}_{0}, \overrightarrow{0}\right)\right]_{1 \leq i, j \leq d}$ is exactly the zero matrix. For (\vec{x}, \vec{z}) sufficiently close to $\left(\vec{x}_{0}, \overrightarrow{0}\right)$, the matrix $\left[\frac{\partial g_{i}}{\partial z_{j}}(\vec{x}, \vec{z})\right]_{1 \leq i, j \leq d}$ will, by continuity, be small enough that (H1) is satisfied. Also observe that $\vec{g}\left(\vec{x}_{0}, \overrightarrow{0}\right)=-A^{-1} \vec{f}\left(\vec{x}_{0}, \vec{y}_{0}\right)=\overrightarrow{0}$. So, once again, by continuity, if \vec{x} is sufficiently close to $\vec{x}_{0}, \vec{g}(\vec{x}, \overrightarrow{0})$ will be small enough that (H2) is satisfied.

We conclude from the Contraction Mapping Theorem that, assuming A is invertible, $\vec{f}(\vec{x}, \vec{y})=0$ has exactly one solution, $\vec{y}(\vec{x})$, near \vec{y}_{0} for each \vec{x} sufficiently near \vec{x}_{0}.

[^0]: (1) We are using $\|\vec{x}\|=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{d}^{2}}$ to denote the norm of the vector \vec{x}.

