
The Contraction Mapping Theorem

Theorem (The Contraction Mapping Theorem)

Fix any a > 0. Let Ba =
{

~x ∈ IRd
∣

∣ ‖~x‖ < a
}

denote the open ball of radius(1) a centred

on the origin in IRd. If the function

~g : Ba → IRd

obeys

there is a constant G < 1 such that ‖~g(~x)− ~g(~y)‖ ≤ G ‖~x− ~y‖ for all ~x, ~y ∈ Ba(H1)

‖~g(~0)‖ < (1−G)a(H2)

then the equation

~x = ~g(~x)

has exactly one solution.

Discussion of hypothesis (H1): Hypothesis (H1) is responsible for the word “Con-

traction” in the name of the theorem. Because G < 1 (and it is crucial that G < 1) the

distance between the images ~g(~x) and ~g(~y) of ~x and ~y is smaller than the original distance

between ~x and ~y. Thus the function g contracts distances. Note that, when the dimension

d = 1, and x, y ∈ Ba = (−a, a), then

|g(x)− g(y)| =
∣

∣

∣

∫ y

x

g′(t) dt
∣

∣

∣
≤

∣

∣

∣

∫ y

x

|g′(t)| dt
∣

∣

∣
≤

∣

∣

∣

∫ y

x

sup
t′∈Ba

|g′(t′)| dt
∣

∣

∣
= |x− y| sup

t′∈Ba

|g′(t′)|

For a once continuously differentiable function, the smallest G that one can pick and still

have |g(x)− g(y)| ≤ G|x − y| for all x, y is G = supt′∈Ba
|g′(t′)|. In this case (H1) comes

down to the requirement that there exist a constant G < 1 such that |g′(t)| ≤ G < 1 for

all t′ ∈ Ba. For dimensions d > 1, one has a whole matrix G(~x) =
[

∂gi
∂xj

(~x)
]

1≤i,j≤d
of first

derivatives. There is a measure of the size of this matrix, called the norm of the matrix

and denoted
∥

∥G(~x)
∥

∥ such that, for all ~x, ~y ∈ Ba

‖~g(~x)− ~g(~y)‖ ≤ ‖~x− ~y‖ sup
~t∈Ba

∥

∥G(~t)
∥

∥

(1) We are using ‖~x‖ =
√

x2
1 + x2

2 + · · ·+ x2
d
to denote the norm of the vector ~x.
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Once again (H1) comes down to
∥

∥G(~t)
∥

∥ ≤ G < 1 for all ~t ∈ Ba.

Roughly speaking, (H1) forces the derivative of ~g to be sufficiently small, which forces

the derivative of ~x− ~g(~x) to be bounded away from zero.

If we were to relax (H1) to G ≤ 1, the theorem would fail. For example, g(x) = x

obeys |g(x)− g(y)| = |x− y| for all x and y. So G would be one in this case. But every x

obeys g(x) = x, so the solution is certainly not unique.

Discussion of hypothesis (H2): If ~g only takes values that are outside of Ba, then

~x = ~g(~x) cannot possibly have any solutions. So there has to be a requirement that ~g(~x)

lies in Ba for at least some values of ~x ∈ Ba. Our hypotheses are actually somewhat

stronger than this:

‖~g(~x)‖ = ‖~g(~x)− ~g(~0) + ~g(~0)‖ ≤ ‖~g(~x)− ~g(~0)‖+ ‖~g(~0)‖ ≤ G‖~x−~0‖+ (1−G)a

by (H1) and (H2). So, for all ~x in Ba, that is, all ~x with ‖~x‖ < a,

‖~g(~x)‖ < Ga+ (1−G)a = a

With our hypotheses ~g : Ba → Ba. Roughly speaking, (H2) requires that ~g(~x) be suffi-

ciently small for at least one ~x.

If we were to relax (H2) to ‖~g(~0)‖ ≤ (1− G)a, the theorem would fail. For example,

pick any a > 0, 0 < G < 1 and define g : Ba → IR by g(x) = a(1 − G) + Gx. Then

g′(x) = G for all x and g(0) = a(1−G). For this g,

g(x) = x ⇐⇒ a(1−G) +Gx = x ⇐⇒ a(1−G) = (1−G)x ⇐⇒ x = a

As x = a is not in the domain of definition of g, there is no solution.

Proof that there is at most one solution: Suppose that ~x∗ and ~y∗ are two solutions.

Then
~x∗ = ~g(~x∗), ~y∗ = ~g(~y∗) =⇒ ‖~x∗ − ~y∗‖ = ‖~g(~x∗)− ~g(~y∗)‖

(H1)
=⇒ ‖~x∗ − ~y∗‖ ≤ G‖~x∗ − ~y∗‖

=⇒ (1−G)‖~x∗ − ~y∗‖ = 0

As G < 1, 1− G is nonzero and ‖~x∗ − ~y∗‖ must be zero. That is, ~x∗ and ~y∗ must be the

same.

Proof that there is at least one solution: Set

~x0 = 0 ~x1 = ~g(~x0) ~x2 = ~g(~x1) · · · ~xn = ~g(~xn−1) · · ·
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We showed in “Significance of hypothesis (H2)” that ~g(~x) is in Ba for all ~x in Ba. So

~x0, ~x1, ~x2, · · · are all in Ba. So the definition ~xn = ~g(~xn−1) is legitimate. We shall show

that the sequence ~x0, ~x1, ~x2, · · · converges to some vector ~x∗. Since ~g is continuous, this

vector will obey

~x∗ = lim
n→∞

~xn = lim
n→∞

~g(~xn−1) = ~g
(

lim
n→∞

~xn−1

)

= ~g(~x∗)

In other words, ~x∗ is a solution of ~x = ~g(~x).

To prove that the sequence converges, we first observe that, applying (H1) numerous

times,
‖~xm − ~xm−1‖ =

∥

∥~g(~xm−1)− ~g(~xm−2)
∥

∥

≤ G
∥

∥~xm−1 − ~xm−2

∥

∥ = G
∥

∥~g(~xm−2)− ~g(~xm−3)
∥

∥

≤ G2
∥

∥~xm−2 − ~xm−3

∥

∥ = G2
∥

∥~g(~xm−3)− ~g(~xm−4)
∥

∥

...

≤ Gm−1
∥

∥~x1 − ~x0

∥

∥ = Gm−1‖~g(~0)‖

Remember that G < 1. So the distance ‖~xm − ~xm−1‖ between the (m − 1)st and mth

entries in the sequence gets really small for m as large. As

~xn = ~x0 +
(

~x1 − ~x0

)

+
(

~x2 − ~x1

)

+ · · ·+
(

~xn − ~xn−1

)

=

n
∑

m=1

(

~xm − ~xm−1

)

(recall that ~x0 = ~0) it suffices to prove that
n
∑

m=1

(

~xm − ~xm−1

)

converges as n → ∞. To do

so it suffices to prove that
n
∑

m=1

∥

∥~xm − ~xm−1

∥

∥ converges as n → ∞, which we do now.

n
∑

m=1

∥

∥~xm − ~xm−1

∥

∥ ≤

n
∑

m=1

Gm−1‖~g(~0)‖ =
1−Gn

1−G
‖~g(~0)‖

As n tends to ∞, Gn converges to zero (because 0 ≤ G < 1) and 1−Gn

1−G
‖~g(~0)‖ converges to

1
1−G

‖~g(~0)‖.

An Application — The Implicit Function Theorem

Now consider some function ~f(~x, ~y) with ~x running over IRn, ~y running over IRd and
~f taking values in IRd. Suppose that we have one point (~x0, ~y0) on the surface ~f(~x, ~y) = 0.

In other words, suppose that ~f(~x0, ~y0) = 0. And suppose that we wish to solve ~f(~x, ~y) = 0

for ~y = ~y(~x) near (~x0, ~y0). First observe that for each fixed ~x, ~f(~x, ~y) = 0 is a system of

d equations in d unknowns. So at least the number of unknowns matches the number of

equations.
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Denote by A the d × d matrix
[

∂fi
∂yj

(~x0, ~y0)
]

1≤i,j≤d
of first partial ~y derivatives at

(~x0, ~y0). Suppose that this matrix has an inverse. When d = 1, the invertibility of A just

means that ∂f
∂y

(x0, ~y0) 6= 0. For d > 1, it just means that 0 is not an eigenvalue of A. We

shall now show that, under the hypothesis that A is invertible, it is indeed possible to solve

for ~y as a function of ~x at least for ~x close to ~x0.

We start by reworking the equation f(~x, ~y) = 0 into a form that we can apply the

Contraction Mapping Theorem to.

~f(~x, ~y) = 0 ⇐⇒ A−1 ~f(~x, ~y) = 0 ⇐⇒ ~y − ~y0 − A−1 ~f(~x, ~y) = ~y − ~y0

Rename ~y − ~y0 = ~z and define

~g(~x, ~z) = ~z − A−1 ~f(~x, ~z + ~y0)

Then
~f(~x, ~y) = 0 ⇐⇒ ~y = ~y0 + ~z and ~g(~x, ~z) = ~z

Now apply the Contraction Mapping Theorem with ~x viewed as a parameter. That is,

fix any ~x sufficiently near ~x0. Then ~g(~x, ~z) is a function of ~z only and one may use the

Contraction Mapping Theorem to solve ~z = ~g(~x, ~z).

We must of course check that the hypotheses are satisfied. Observe first, that when

~z = ~0 and ~x = ~x0, the matrix
[

∂gi
∂zj

(~x0,~0)
]

1≤i,j≤d
of first derivatives of ~g is exactly 1l−A−1A.

The identity matrix 1l arises from differentiating the term ~z of ~g and −A−1A arises from

differentiating −A−1 ~f(~x0, ~z + ~y0). So
[

∂gi
∂zj

(~x0,~0)
]

1≤i,j≤d
is exactly the zero matrix. For

(~x, ~z) sufficiently close to (~x0,~0), the matrix
[

∂gi
∂zj

(~x, ~z)
]

1≤i,j≤d
will, by continuity, be small

enough that (H1) is satisfied. Also observe that ~g(~x0,~0) = −A−1 ~f(~x0, ~y0) = ~0. So, once

again, by continuity, if ~x is sufficiently close to ~x0, ~g(~x,~0) will be small enough that (H2)

is satisfied.

We conclude from the Contraction Mapping Theorem that, assuming A is invertible,
~f(~x, ~y) = 0 has exactly one solution, ~y(~x), near ~y0 for each ~x sufficiently near ~x0.
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