CARTESIAN COORDINATES

CYLINDRICAL COORDINATES

SPHERICAL COORDINATES

 $\rho = \text{distance from } (x, y, z) \text{ to } (0, 0, 0)$

 $\phi=$ angle between the line $\overline{\left(0,0,0\right)\left(x,y,z\right)}$ and the z axis

 $\theta = \text{ angle between the line } \overline{(0,0,0)(x,y,0)} \text{ and the } x \text{ axis}$

$$x = \rho \sin \phi \cos \theta$$

$$p = \sqrt{x^2 + y^2 + z^2}$$

$$y = \rho \sin \phi \sin \theta$$

$$\theta = \tan^{-1} \frac{y}{x}$$

$$z = \rho \cos \phi$$

$$\phi = \tan^{-1} \frac{\sqrt{x^2 + y^2}}{z}$$

Surface of constant ρ

Surface of constant θ

Surface of constant ϕ

(x,y,z)

(x,y,0)

volume element $dV = \rho^2 \sin \varphi \, d\rho \, d\theta \, d\varphi$

