CARTESIAN COORDINATES

CYLINDRICAL COORDINATES

volume element $d V=r d r d \theta d z$

surface of constant r

surface of constant θ

surface of constant z

$$
\begin{array}{lll}
x=r \cos \theta & y=r \sin \theta & z=z \\
r=\sqrt{x^{2}+y^{2}} & \theta=\tan ^{-1} \frac{y}{x} & z=z
\end{array}
$$

SPHERICAL COORDINATES

Side View
$\rho=$ distance from (x, y, z) to $(0,0,0)$
$\phi=$ angle between the line $\overline{(0,0,0)(x, y, z)}$ and the z axis
$\theta=$ angle between the line $\overline{(0,0,0)(x, y, 0)}$ and the x axis

$$
\begin{aligned}
& x=\rho \sin \phi \cos \theta \\
& y=\rho \sin \phi \sin \theta \\
& z=\rho \cos \phi
\end{aligned}
$$

$$
\rho=\sqrt{x^{2}+y^{2}+z^{2}}
$$

$$
\theta=\tan ^{-1} \frac{y}{x}
$$

$$
\phi=\tan ^{-1} \frac{\sqrt{x^{2}+y^{2}}}{z}
$$

Surface of constant ρ

Surface of constant θ

Surface of constant ϕ

volume element $d V=\rho^{2} \sin \varphi d \rho d \theta d \varphi$

