A Compendium of Curve Formulae

In the following $\mathbf{r}(t)=(x(t), y(t), z(t))$ is a parametrization of a curve. The vectors $\hat{\mathbf{T}}(t), \hat{\mathbf{N}}(t)$, and $\hat{\mathbf{B}}(t)=\hat{\mathbf{T}}(t) \times \hat{\mathbf{N}}(t)$ are the unit tangent, normal and binormal vectors, respectively, at $\mathbf{r}(t)$. The tangent vector points in the direction of travel (i.e. direction of increasing t) and the normal vector points toward the centre of curvature. The arc length from time 0 to time t is denoted $s(t)$. Then

- the velocity

$$
\mathbf{v}(t)=\frac{d \mathbf{r}}{d t}(t)=\frac{d s}{d t}(t) \hat{\mathbf{T}}(t)
$$

- the acceleration
$\mathbf{a}(t)=\frac{d^{2} \mathbf{r}}{d t^{2}}(t)=\frac{d^{2} s}{d t^{2}}(t) \hat{\mathbf{T}}(t)+\kappa(t)\left(\frac{d s}{d t}(t)\right)^{2} \hat{\mathbf{N}}(t)$
- the speed
$\frac{d s}{d t}(t)=|\mathbf{v}(t)|=\left|\frac{d \mathbf{r}}{d t}(t)\right|$
- the arc length

$$
s(t)=\int_{0}^{t} \frac{d s}{d t}(\tau) d \tau=\int_{0}^{1} \sqrt{x^{\prime}(\tau)^{2}+y^{\prime}(\tau)^{2}+z^{\prime}(\tau)^{2}} d \tau
$$

- the curvature

$$
\kappa(t)=\frac{|\mathbf{v}(t) \times \mathbf{a}(t)|}{\left(\frac{d s}{d t}(t)\right)^{3}}
$$

- the radius of curvature $\quad \rho(t)=\frac{1}{\kappa(t)}$
- the centre of curvature is $\mathbf{r}(t)+\rho(t) \hat{\mathbf{N}}(t)$
- the torsion
- the binormal

$$
\tau(t)=\frac{(\mathbf{v}(t) \times \mathbf{a}(t)) \cdot \frac{d \mathbf{a}}{d t}(t)}{|\mathbf{v}(t) \times \mathbf{a}(t)|^{2}}
$$

$$
\hat{\mathbf{B}}(t)=\hat{\mathbf{T}}(t) \times \hat{\mathbf{N}}(t)=\frac{\mathbf{v}(t) \times \mathbf{a}(t)}{|\mathbf{v}(t) \times \mathbf{a}(t)|}
$$

Under arclength parametrization (i.e. if $t=s$) we have $\hat{\mathbf{T}}(s)=\frac{d \mathbf{r}}{d s}(s)$ and the Frenet-Serret formulae

$$
\begin{aligned}
\frac{d \hat{\mathbf{T}}}{d s}(s) & =\kappa(s) \hat{\mathbf{N}}(s) \\
\frac{d \hat{\mathbf{N}}}{d s}(s) & =\tau(s) \hat{\mathbf{B}}(s)-\kappa(s) \hat{\mathbf{T}}(s) \\
\frac{d \mathbf{B}}{d s}(s) & =-\tau(s) \hat{\mathbf{N}}(s)
\end{aligned}
$$

When the curve lies in the $x-y$ plane

$$
\kappa(t)=\frac{\left|\frac{d x}{d t}(t) \frac{d^{2} y}{d t^{2}}(t)-\frac{d y}{d t}(t) \frac{d^{2} x}{d t^{2}}(t)\right|}{\left[\left(\frac{d x}{d t}(t)\right)^{2}+\left(\frac{d y}{d t}(t)\right)^{2}\right]^{3 / 2}}
$$

When the curve lies in the $x-y$ plane and the parameter is x (so that y is given as a function $y(x)$ of $x)$

$$
\kappa(x)=\frac{\left|\frac{d^{2} y}{d x^{2}}(x)\right|}{\left[1+\left(\frac{d y}{d x}(x)\right)^{2}\right]^{3 / 2}}
$$

