## A Continuous Bijection with Discontinuous Inverse

If you take Math 320 next year, you will learn that if a map

- $\circ$  is continuous and
- is bijective (meaning that it is one-to-one and onto) and
- $\circ$  has a compact domain (a subset of  $\mathbb{R}^n$  is compact if and only if it is both closed and bounded)

## then

• its inverse map is also continuous.

In theses notes, we will see what can go wrong if the domain is not compact. We will construct a map  $\varphi : \mathcal{D} \to \mathcal{R}$  which is continuous, one-to-one and onto (i.e. bijective) and whose inverse map is not continuous. The domain  $\mathcal{D}$  and range  $\mathcal{R}$  are



The map  $\varphi$  is continuous — because 0 is not in the domain of  $\varphi$ , we need worry about its continuity there. The inverse map of  $\varphi$  is

$$x = \varphi^{-1}(y) = \begin{cases} y - 1 & \text{if } 0 \le y < 1\\ y + 1 & \text{if } -1 < y < 0 \end{cases}$$

So

So

$$\varphi^{-1}([0,1)) = [-1,0) \qquad \varphi^{-1}((-1,0)) = (0,1) \qquad \varphi^{-1}(\mathcal{R}) = \mathcal{D}$$

Now 0 is in the domain of  $\varphi^{-1}$  and  $\varphi^{-1}$  is *not* continuous there.

April 5, 2016