Divergence Theorem and Variations

Theorem. If V is a solid with surface ∂V

$$
\begin{aligned}
\iint_{\partial V} \mathbf{F} \cdot \hat{\mathbf{n}} d S & =\iiint_{V} \nabla \cdot \mathbf{F} d V \\
\iint_{\partial V} f \hat{\mathbf{n}} d S & =\iiint_{V} \nabla f d V \\
\iint_{\partial V} \hat{\mathbf{n}} \times \mathbf{F} d S & =\iiint_{V} \boldsymbol{\nabla} \times \mathbf{F} d V
\end{aligned}
$$

where $\hat{\mathbf{n}}$ is the outward unit normal of ∂V.
Memory Aid. All three formulae can be combined into

$$
\iint_{\partial V} \hat{\mathbf{n}} * \tilde{F} d S=\iiint_{V} \nabla * \tilde{F} d V
$$

where $*$ can be either \cdot, \times or nothing. When $*=\cdot$ or $*=\times$, then $\tilde{F}=\mathbf{F}$. When $*$ is nothing, $\tilde{F}=f$.

Proof: The first formula is the divergence theorem and was proven in class.
To prove the second formula, assuming the first, apply the first with $\mathbf{F}=f \mathbf{a}$, where \mathbf{a} is any constant vector.

$$
\begin{aligned}
\iint_{\partial V} f \mathbf{a} \cdot \hat{\mathbf{n}} d S & =\iiint_{V} \nabla \cdot(f \mathbf{a}) d V \\
& =\iiint_{V}[(\nabla f) \cdot \mathbf{a}+f \nabla \cdot \mathbf{a}] d V \\
& =\iiint_{V}(\nabla f) \cdot \mathbf{a} d V
\end{aligned}
$$

To get the second line, we used vector identity \# 8. To get the third line, we just used that \mathbf{a} is a constant, so that it is annihilated by all derivatives. Since a is a constant, we can factor it out of both integrals, so

$$
\begin{aligned}
& \mathbf{a} \cdot \iint_{\partial V} f \hat{\mathbf{n}} d S=\mathbf{a} \cdot \iiint_{V} \nabla f d V \\
& \Longrightarrow \mathbf{a} \cdot\left\{\iint_{\partial V} f \hat{\mathbf{n}} d S-\iiint_{V} \nabla f d V\right\}=0
\end{aligned}
$$

In particular, choosing $\mathbf{a}=\hat{\boldsymbol{\imath}}, \hat{\boldsymbol{\jmath}}$ and $\hat{\mathbf{k}}$, we see that all three components of the vector $\iint_{\partial V} f \hat{\mathbf{n}} d S-\iiint_{V} \nabla f d V$ are zero. So

$$
\iint_{\partial V} f \hat{\mathbf{n}} d S-\iiint_{V} \nabla f d V=0
$$

which is what we wanted show.
To prove the third formula, assuming the first, apply the first with \mathbf{F} replaced by $\mathbf{F} \times \mathbf{a}$, where \mathbf{a} is any constant vector.

$$
\begin{aligned}
\iint_{\partial V} \mathbf{F} \times \mathbf{a} \cdot \hat{\mathbf{n}} d S & =\iiint_{V} \nabla \cdot(\mathbf{F} \times \mathbf{a}) d V \\
& =\iiint_{V}[(\nabla \times \mathbf{F}) \cdot \mathbf{a}-\mathbf{F} \cdot \nabla \times \mathbf{a}] d V \\
& =\iiint_{V}(\nabla \times \mathbf{F}) \cdot \mathbf{a} d V
\end{aligned}
$$

To get the second line, we used vector identity \# 9. To get the third line, we just used that \mathbf{a} is a constant, so that it is annihilated by all derivatives. For all vectors

$$
\mathbf{F} \times \mathbf{a} \cdot \hat{\mathbf{n}}=\hat{\mathbf{n}} \cdot \mathbf{F} \times \mathbf{a}=\hat{\mathbf{n}} \times \mathbf{F} \cdot \mathbf{a}
$$

so

$$
\begin{aligned}
& \mathbf{a} \cdot \iint_{\partial V} \hat{\mathbf{n}} \times \mathbf{F} d S=\mathbf{a} \cdot \iiint_{V} \boldsymbol{\nabla} \times \mathbf{F} d V \\
& \Longrightarrow \mathbf{a} \cdot\left\{\iint_{\partial V} \hat{\mathbf{n}} \times \mathbf{F} d S-\iiint_{V} \boldsymbol{\nabla} \times \mathbf{F} d V\right\}=0
\end{aligned}
$$

In particular, choosing $\mathbf{a}=\hat{\boldsymbol{\imath}}, \hat{\boldsymbol{\jmath}}$ and $\hat{\mathbf{k}}$, we see that all three components of the vector $\iint_{\partial V} \hat{\mathbf{n}} \times \mathbf{F} d S-\iiint_{V} \boldsymbol{\nabla} \times \mathbf{F} d V$ are zero. So

$$
\iint_{\partial V} \hat{\mathbf{n}} \times \mathbf{F} d S-\iiint_{V} \boldsymbol{\nabla} \times \mathbf{F} d V=0
$$

which is what we wanted show.

