Divergence Theorem and Variations

Theorem. If V is a solid with surface OV
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where N is the outward unit normal of OV .

Memory Aid. All three formulae can be combined into
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where % can be either -, X or nothing. When % = - or *« = X, then F = F. When * is
nothing, F = f.

Proof: The first formula is the divergence theorem and was proven in class.
To prove the second formula, assuming the first, apply the first with F = fa, where

a is any constant vector.

//fa~ﬁdS:///VV-(fa) av

) [ (@pasr9alav
:///V(Vf)-adv

To get the second line, we used vector identity # 8. To get the third line, we just used
that a is a constant, so that it is annihilated by all derivatives. Since a is a constant, we
can factor it out of both integrals, so
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In particular, choosing a = %, 3 and k, we see that all three components of the vector

If 5 f2dS — [[[,, V.f dV are zero. So
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which is what we wanted show.
To prove the third formula, assuming the first, apply the first with F replaced by
F x a, where a is any constant vector.
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To get the second line, we used vector identity # 9. To get the third line, we just used
that a is a constant, so that it is annihilated by all derivatives. For all vectors

Fxan=n-Fxa=nxF-a
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In particular, choosing a = %, 3 and l::, we see that all three components of the vector
[[ oy x F dS — [[[,, V xF dV are zero. So
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which is what we wanted show. [ ]
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