
The Physical Significance of div and curl

Consider a (possibly compressible) fluid with velocity field v(x, t). Pick any time t0

and a really tiny piece of the fluid, which at time t0 is a cube with corners at

{

x0 + n1εê
(1) + n2εê

(2) + n3εê
(3)

∣

∣ n1, n2, n3 ∈ {0, 1}
}

x0

εê(2)
εê(1)

εê(3)

Here ε is the length of each edge of the cube and is assumed to be really small. The vectors

ê(1), ê(2) and ê(3) are three mutually perpendicular unit vectors that give the orientation

of the cube. The vectors from the corner x0 to its three nearest neighbour corners are

εê(1), εê(2) and εê(3). As time progresses, the hunk of fluid moves. In particular, the

corners move. Let us denote by εb(1)(t) the vector, at time t, joining the n1 = n2 = n3 = 0

corner to the n1 = 1, n2 = n3 = 0 corner. Define εb(2)(t) and εb(3)(t) similarly. For times

very close to t0 we can think of our hunk of fluid as being essentially a parallelepiped with

edges εb(k)(t). By concentrating on the edges εb(k)(t) of the hunk of fluid, rather than the

corners, like x0, we are ignoring the translations of the hunk of fluid. We want, instead,

to determine how the size and orientation of the parallelepiped changes as t increases.

At time t0, b
(k) = ê(k). The velocities of the corners of the hunk of fluid at time t0

are

v
(

x0 + n1εê
(1) + n2εê

(2) + n3εê
(3), t0

)

In particular, at time t0, the tail of εb(k) has velocity v(x0, t0) and the head of εb(k) has

velocity v(x0 + εê(k), t0). Consequently,

εdb
(k)

d t
(t0) = v

(

x0 + εê(k), t0
)

− v
(

x0, t0
)

=
3
∑

j=1

ε ∂v
∂xj

(

x0, t0
)

ê
(k)
j +O(ε2)

and
db

(k)

d t (t0) =
3
∑

j=1

∂v
∂xj

(

x0, t0
)

ê
(k)
j +O(ε)

The notation O(εn) represents a function that is bounded by a constant times εn for all

sufficiently small ε. The notation ê
(k)
j just refers to the jth component of the vector ê(k).

Define the 3× 3 matrix V by

Vi,j =
∂vi

∂xj

(

x0, t0
)

(M)

Then
db

(k)

d t (t0) = Vb(k)(t0) +O(ε)
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We study the behaviour of b(k)(t) for small ε and t close to t0, by studying the behaviour

of the solutions to the initial value problems

db
(k)

d t (t) = Vb(k)(t) b(k)(t0) = ê(k) (IVP)

To warm up, we first look at two two–dimensional examples. In both examples, the velocity

field v(x, y) is linear in (x, y). Consequently, in these examples, v
(

x0+εê(k), t0
)

−v
(

x0, t0
)

is exactly
∑3

j=1 ε
∂v
∂xj

(

x0, t0
)

ê
(k)
j and the solution to (IVP) coincides with the exact b(k)(t).

Following each example, we discuss a broad class of V’s that generate behaviour similar to

that of the example.

Example 1: v(x, y) = 2x̂ııı+ 3y̂.

In this example

V =

[

2 0
0 3

]

The solution to

b′(t) = Vb(t) b(0) =

[

β1
β2

]

or equivalently
b′1(t) = 2b1(t) b1(0) = β1
b′2(t) = 3b2(t) b2(0) = β2

is
b1(t) = e2tβ1
b2(t) = e3tβ2

or equivalently b(t) =

[

e2t 0
0 e3t

]

b(0)

If one chooses ê(1) = ı̂ıı and ê(2) = ̂, the edges, b(1)(t) = e2tê(1)

and b(2)(t) = e3tê(2), of the hunk of fluid never change direction.

But their lengths change. The relative rate of change of length per

unit time, |db
(k)

d t (t)|/|b(k)(t)|, is 2 for b(1) and 3 for b(3). In the

figure on the right, the darker rectangle is the initial square. That

is, the square with edges b(k)(t0) = ê(k). The lighter rectangle is

that with edges b(k)(t) for some t a bit bigger than t0.

Example 1 - generalized. The behaviour of Example 1 is typical of V’s that are sym-

metric matrices, i.e. that obey Vi,j = Vj,i for all i, j. Any d × d symmetric matrix (with

real entries)

• has d real eigenvalues

• has d mutually orthogonal real unit eigenvectors.

Denote by λk, 1 ≤ k ≤ d, the eigenvalues of V and choose d mutually perpendicular real

unit vectors, ê(k), that obey V ê(k) = λkê
(k) for all 1 ≤ k ≤ d. Then

b(k)(t) = eλk(t−t0) ê(k)
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obeys

db
(k)

d t (t) = λke
λk(t−t0) ê(k) = eλk(t−t0) V ê(k) = Vb(k)(t) and b(k)(t0) = ê(k)

So b(k)(t) = eλk(t−t0) ê(k) satisfies (IVP) for all t and 1 ≤ k ≤ d.

If we start, at time t0, with a cube whose edges, ê(k), are eigenvectors of V, then as

time progresses the edges, b(k)(t), of the hunk of fluid never change direction. But their

lengths change with the relative rate of change of length per unit time being λk for edge

number k. This rate of change may be positive (the edge grows with time) or negative

(the edge shrinks in time) depending on the sign of λk. The volume of the hunk of fluid at

time t is V (t) = eλ1(t−t0) · · · eλd(t−t0). The relative rate of change of volume per unit time

is V ′(t)/V (t) = λ1 · · · + λd, the sum of the d eigenvalues. The sum of the eigenvalues of

any d× d matrix V is given by its trace
∑d

i=1 Vi,i. For the matrix (M)

V ′(t0)
V (t0)

=
d

∑

i=1

∂vi

∂xi

(

x0, t0
)

= ∇∇∇ · v
(

x0, t0
)

So, at least when the matrix (M) is symmetric, the divergence ∇∇∇ · v
(

x0, t0
)

gives the

relative rate of change of volume per unit time for our tiny hunk of fluid at time t0 and

position x0.

Example 1 - generalized yet again.

For any d× d matrix V, the solution of

b′(t) = Vb(t) b(t0) = e

is

b(t) = eV(t−t0)e

where the exponential of a d× d matrix B is defined by the power series

eB = 1l +B + 1
2B

2 + 1
3!B

3 + · · · =
∞
∑

n=0

1
n!B

n

with 1l denoting the d × d identity matrix. This sum converges for all d × d matrices

B. Furthermore it easy to check, using the power series, that eV(t−t0) obeys d
dte

V(t−t0) =

VeV(t−t0) and is the identity matrix when t = t0. So b(t) = eV(t−t0)e really does obey

b′(t) = Vb(t) and b(t0) = e.

Pick any d vectors e(k), 1 ≤ k ≤ d, and define b(k)(t) = eV(t−t0)e(k). Also let E be

the d×d matrix whose kth column is e(k) and E(t) be the d×d matrix whose kth column is
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b(k)(t). Then the volume of the parallelpiped with edges e(k), 1 ≤ k ≤ d, is V (t0) = detE

and the volume of the parallelpiped with edges b(k)(t), 1 ≤ k ≤ d, is

V (t) = detE(t) = det
(

eV(t−t0)E
)

= det
(

eV(t−t0)
)

detE = det
(

eV(t−t0)
)

V (t0)

For any d× d matrix B, det eB = etrB , so

V (t) = e(t−t0) trVV (t0) ⇒ V ′(t0)
V (t0)

= trV =

d
∑

i=1

Vi,i

So, for any matrix (M) and any choice of ê(k), 1 ≤ k ≤ d, the divergence ∇∇∇ · v
(

x0, t0
)

gives the relative rate of change of volume per unit time for our tiny hunk of fluid at time

t0 and position x0.

Example 2: v(x, y) = −yı̂ıı+ x̂. In this example

V =

[

0 −1
1 0

]

The solution to

b′(t) = Vb(t) b(0) = (β1, β2) or equivalently
b′1(t) = −b2(t) b1(0) = β1
b′2(t) = b1(t) b2(0) = β2

is
b1(t) = β1 cos t− β2 sin t
b2(t) = β1 sin t+ β2 cos t

or equivalently b(t) =

[

cos t − sin t
sin t cos t

]

b(0)

The vector b(t) has the same length as b(0). The angle between

b(t) and b(0) is t radians. So, in this example, no matter what

direction vectors ê(k) we pick, the hunk of fluid just rotates at

one radian per unit time. In the figure on the right, the outlined

rectangle is the initial square. That is, the square with edges

b(k)(t0) = ê(k). The shaded rectangle is that with edges b(k)(t)

for some t a bit bigger than t0.

Example 2 - generalized. The behaviour of example 2 is typical of V’s that are anti-

symmetric matrices, i.e. that obey Vi,j = −Vj,i for all i, j. As we have already observed,

for any d× d matrix V, the solution of b′(t) = Vb(t), b(0) = e is b(t) = eVte. We now

show that if V is a 3 × 3 antisymmetric matrix, then eVt is a rotation. Assuming that V
is not the zero matrix (in which case eVt is the identity matrix for all t), we can find a
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number Ω > 0 and a unit vector k̂ = (k1, k2, k3) (not necessarily the standard unit vector

parallel to the z–axis) such that

V =





0 −Ωk3 Ωk2
Ωk3 0 −Ωk1
−Ωk2 Ωk1 0



 (R)

This is easy. Because V is antisymmetric, all of the entries on its diagonal must be zero.

Define Ω to be
√

V2
1,2 + V2

1,3 + V2
2,3 and k1 = −V2,3/Ω, k2 = V1,3/Ω, k3 = −V1,2/Ω. Also,

let ı̂ıı be any unit vector orthogonal to k̂ (again, not necessarily the standard one) and

̂ = k̂ × ı̂ıı. So ı̂ıı, ̂, k̂ is a right–handed system of three mutually perpendicular unit

vectors.

Observe that, for any vector e = (e1, e2, e3)

Ve =





0 −Ωk3 Ωk2
Ωk3 0 −Ωk1
−Ωk2 Ωk1 0









e1
e2
e3



 = Ω





k2e3 − k3e2
k3e1 − k1e3
k1e2 − k2e1



 = Ωk̂× e

In particular,

V ı̂ıı = Ωk̂× ı̂ıı = Ω̂ V ̂ = Ωk̂× ̂ = −Ωı̂ıı Vk̂ = Ωk̂× k̂ = ~0

V2ı̂ıı = ΩV ̂ = −Ω2ı̂ıı V2̂ = −ΩV ı̂ıı = −Ω2̂ V2k̂ = V~0 = ~0

V3ı̂ıı = ΩV2̂ = −Ω3̂ V3̂ = −ΩV2ı̂ıı = Ω3ı̂ıı V3k̂ = V2~0 = ~0

V4ı̂ıı = ΩV3̂ = Ω4ı̂ıı V4̂ = −ΩV3ı̂ıı = Ω4̂ V4k̂ = V3~0 = ~0

and so on. For all odd n ≥ 1,

Vnı̂ıı = (−1)(n−1)/2Ωn̂ Vn̂ = −(−1)(n−1)/2Ωnı̂ıı Vnk̂ = ~0

and all even n ≥ 2,

Vnı̂ıı = (−1)n/2Ωnı̂ıı Vn̂ = (−1)n/2Ωn̂ Vnk̂ = ~0

Hence

eVtı̂ıı =
∞
∑

n=0

1
n!(Vt)

nı̂ıı =
∑

n even

(−1)n/2

n! (Ωt)nı̂ıı +
∑

n odd

(−1)(n−1)/2

n! (Ωt)n̂ = cos(Ωt) ı̂ıı+ sin(Ωt) ̂

eVt̂ =
∞
∑

n=0

1
n!(Vt)

n̂ =
∑

n even

(−1)n/2

n! (Ωt)n̂−
∑

n odd

(−1)(n−1)/2

n! (Ωt)nı̂ıı = − sin(Ωt) ı̂ıı + cos(Ωt) ̂

eVtk̂ =
∞
∑

n=0

1
n!
(Vt)nk̂ = k̂
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So eVt is rotation by an angle Ωt about the axis k̂.

Whether or not the matrix (M) is antisymmetric, the matrix with entries

Ai,j =
1
2

(

Vi,j − Vj,i

)

is. When (M) is antisymmetric, A and V coincide. The matrix A is

A=
1

2





0 ∂v1

∂x2

(

x0, t0
)

− ∂v2

∂x1

(

x0, t0
)

∂v1

∂x3

(

x0, t0
)

− ∂v3

∂x1

(

x0, t0
)

− ∂v1

∂x2

(

x0, t0
)

+ ∂v2

∂x1

(

x0, t0
)

0 ∂v2

∂x3

(

x0, t0
)

− ∂v3

∂x2

(

x0, t0
)

− ∂v1

∂x3

(

x0, t0
)

+ ∂v3

∂x1

(

x0, t0
)

− ∂v2

∂x3

(

x0, t0
)

+ ∂v3

∂x2

(

x0, t0
)

0





Comparing this with (R), we see that

Ωk̂ = 1
2∇× v

(

x0, t0
)

So, at least when the matrix (M) is antisymmetric, our tiny cube rotates about the axis

with ∇× v
(

x0, t0
)

at rate 1
2

∣

∣∇× v
(

x0, t0
)
∣

∣.

Remark. In the generalization of Example 2, we only considered dimension 3. It is a nice

exercise in eigenvalues and eigenvectors to handle general dimension. Here are the main

facts about antisymmetric matrices with real entries that are used.

◦ All eigenvalues of antisymmetric matrices are either zero or pure imaginary.

◦ For antisymmetric matrices with real entries, the nonzero eigenvalues come in complex

conjugate pairs. The corresponding eigenvectors may also be chosen to be complex

conjugates.

Choose as basis vectors (like ı̂ıı, ̂, k̂ above)

◦ the eigenvectors of eigenvalue 0 (they act like k̂ above)

◦ the real and imaginary parts of each complex conjugate pair of eigenvectors (they act

like ı̂ıı, ̂ above)

Resumé so far:

We have now seen that

• when the matrix V defined in (M) is symmetric and the direction vectors ê(k) of

the cube are eigenvectors of V, then, at time t0, the hunk of fluid is not changing

orientation but is changing volume at instantaneous relative rate ∇ · v
(

x0, t0
)

.

• when the matrix V defined in (M) is antisymmetric, then, at time t0, the hunk of

fluid is not changing shape or size but is rotating about the axis ∇×v
(

x0, t0
)

at rate
1
2

∣

∣∇× v
(

x0, t0
)
∣

∣. For this reason, ∇× v is often referred to as a “vorticity” meter.
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The general case:

Now consider a general V. It can always be written as the sum

V = S + A

of a symmetric and an antisymmetric matrix. Just define

Si,j =
1
2

(

Vi,j + Vj,i

)

Ai,j =
1
2

(

Vi,j − Vj,i

)

As we have already observed, the solution of

b′(t) = Vb(t) b(0) = e

is

b(t) = eVte = e(A+S)te

If S and A were ordinary numbers, we would have e(A+S)t = eAteSt. But for matrices this

need not be the case, unless S and A happen to commute. For arbitrary matrices, it is

still true that

e(A+S)t = lim
n→∞

[

eAt/neSt/n
]n

This is called the Lie product formula. It shows that our tiny hunk of fluid mixes together

the behaviours of A and S, scaling a bit, then rotating a bit, then scaling a bit and so on.

Example 3: v(x, y) = 2yı̂ıı.

In this example

V =

[

0 2
0 0

]

= S +A with S =

[

0 1
1 0

]

A =

[

0 1
−1 0

]

The solution to the full flow

b′(t) = Vb(t) b(0) = (β1, β2) or equivalently
b′1(t) = 2b2(t) b1(0) = β1

b′2(t) = 0 b2(0) = β2

is
b1(t) = β1 + 2β2t

b2(t) = β2
or equivalently b(t) =

[

1 2t
0 1

]

b(0)

The solution to the S part of the flow

b′(t) = Sb(t) b(0) = (β1, β2) or equivalently
b′1(t) = b2(t) b1(0) = β1
b′2(t) = b1(t) b2(0) = β2
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is
b1(t) = β1 cosh t+ β2 sinh t
b2(t) = β1 sinh t+ β2 cosh t

or equivalently b(t) =

[

cosh t sinh t
sinh t cosh t

]

b(0)

The eigenvectors of S are

ê(1) =
1√
2

[

1
1

]

ê(2) =
1√
2

[

1
−1

]

The corresponding eigenvalues are +1 and −1. The eigenvectors obey

eStê(1) =

[

cosh t sinh t
sinh t cosh t

]

ê(1) = etê(1) eStê(2) =

[

cosh t sinh t
sinh t cosh t

]

ê(2) = e−tê(2)

Under the S part of the flow ê(1) scales by a factor of et, which is bigger than one for t > 0

and ê(2) scales by a factor of e−t, which is smaller than one for t > 0.

The solution to the A part of the flow

b′(t) = Ab(t) b(0) = (β1, β2) or equivalently
b′1(t) = b2(t) b1(0) = β1
b′2(t) = −b1(t) b2(0) = β2

is
b1(t) = β1 cos t+ β2 sin t
b2(t) = −β1 sin t+ β2 cos t

or equivalently b(t) =

[

cos t sin t
− sin t cos t

]

b(0)

The A part of the flow rotates clockwise about the origin at one radian per unit time.

Here are some figures. The first shows a square with edges ê(1), ê(2) and its image

under the full flow t = 0.4 later. Under this full flow ê(k) → e0.4V ê(k). The second shows

its image under 0.4 time units of the S–flow (that is, ê(k) → e0.4S ê(k)). The third applies

0.4 time units of the A–flow to the shaded rectangle of the middle figure. So the lightly

shaded rectangle of the third figure has edges e0.4S ê(k) and the darkly shaded rectangle

has edges e0.4Ae0.4S ê(k).

ê(k) and e0.4V ê(k) ê(k) and e0.4S ê(k) e0.4S ê(k) and e0.4Ae0.4S ê(k)

Of course e0.4Ae0.4S ê(k) is not a very good approximation for e0.4(A+S)ê(k). It is much

better to take
[

e0.4A/ne0.4S/n
]n
ê(k) with n large. Each of the following figures shows two
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parallelepipeds. In each, the shaded region has edges e0.4V ê(k) = e0.4(A+S)ê(k) and the

outlined region has edges
[

e0.4A/ne0.4S/n
]n
ê(k).

n = 1 n = 5 n = 10
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