
Interpretation of Gradient, Divergence and Curl

Gradient

The rate of change of a function f per unit distance as you leave the point (x0, y0, z0) moving

in the direction of the unit vector n̂ is given by the directional derivative

Dn̂f(x0, y0, z0) = ∇∇∇f(x0, y0, z0) · n̂ = |∇∇∇f(x0, y0, z0)| cos θ

where θ is the angle between∇∇∇f(x0, y0, z0) and n̂. The angle θ which maximizes this rate of change

is 0 since cos 0 = 1 ≥ cos θ for all θ. The angle θ is zero when ∇∇∇f(x0, y0, z0) and n̂ point in the

same direction. This tells us that

• The direction of the vector ∇∇∇f(x0, y0, z0) is the direction that gives the maximum rate of

change of f per unit distance as you leave the (x0, y0, z0).

• The length of the vector ∇∇∇f(x0, y0, z0) is magnitude of the maximum rate of change of f per

unit distance as you leave the (x0, y0, z0).

Divergence

Let Bε(x0, y0, z0) be a tiny ball centred on the point (x0, y0, z0) and denote by Sε(x0, y0, z0)

its surface. Because Bε(x0, y0, z0) is really small, ∇∇∇ · v is essentially constant in Bε(x0, y0, z0) and

we essentially have

∫∫∫

Bε(x0,y0,z0)

∇∇∇ · v dV = ∇∇∇ · v(x0, y0, z0) Vol
(

Bε(x0, y0, z0)
)

By the divergence theorem, we also have

∫∫∫

Bε(x0,y0,z0)

∇∇∇ · v dV =

∫∫

Sε(x0,y0,z0)

v · n̂ dS

Think of the vector field v as the velocity of a moving fluid of density one. We have already seen

that the flux integral for a velocity field has the interpretation

∫∫

Sε(x0,y0,z0)

v · n̂ dS = the rate at which fluid is leaving Bε(x0, y0, z0) through Sε(x0, y0, z0)

= the rate at which fluid is being created in Bε(x0, y0, z0)

We conclude that

∇∇∇ · v(x0, y0, z0) = lim
ε→0

the rate at which fluid is being created in Bε(x0, y0, z0)

Vol
(

Bε(x0, y0, z0)
)

This is called “the strength of the source at (x0, y0, z0)”.
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Curl

Let Dε(x0, y0, z0) be a tiny flat circular disk of radius ε centred on the point (x0, y0, z0) and

denote by Cε(x0, y0, z0) its boundary circle. Let n̂ be a unit normal vector to Dε. It tells us the

orientation of Dε. Give the circle Cε the corresponding orientation using the right hand rule. That

is, if the fingers of your right hand are pointing in the corresponding direction of motion along Cε

and your palm is facing Dε, then the thumb is pointing in the direction n̂. Because Dε(x0, y0, z0)

n̂

Cε

Dε

is really small, ∇∇∇× v is essentially constant on Dε(x0, y0, z0) and we essentially have

∫∫

Dε(x0,y0,z0)

∇∇∇× v · n̂ dS = ∇∇∇× v(x0, y0, z0) · n̂ Area
(

Dε(x0, y0, z0)
)

= πε2 ∇∇∇×v(x0, y0, z0) · n̂

By Stokes’ theorem, we also have

∫∫

Dε(x0,y0,z0)

∇∇∇× v · n̂ dS =

∮

Cε(x0,y0,z0)

v · dr

Again, think of the vector field v as the velocity of a moving fluid. Then
∮

Cε

v · dr is called

the circulation of v around Cε. To measure the circulation experimentally, place a small paddle

wheel in the fluid, with the axle of the paddle wheel pointing along n̂ and each of the paddles

perpendicular to Cε and centred on Cε. Each paddle moves tangentially to Cε. It would like to

n̂

ε

Cε

move with the same speed as the tangential speed v · t̂ (where t̂ is the forward pointing unit tangent

vector to Cε at the location of the paddle) of the fluid at its location. But all paddles are rigidly

fixed to the axle of the paddle wheel and so must all move with the same speed. That common

speed will be the average value of v · t̂ around Cε. If ds represents an element of arc length of Cε,

the average value of v · t̂ around Cε is

vT = 1
2πε

∮

Cε

v · t̂ ds = 1
2πε

∮

Cε

v · dr

since dr has direction t̂ and length ds so that dr = t̂ds. If the paddle wheel rotates at Ω radians

per unit time, each paddle travels a distance Ωε (remember that ε is the radius of Cε) per unit

time. That is vT = Ωε. Combining all this info,

Ωε = vT = 1
2πε

∮

Cε

v · dr = 1
2πε

∫∫

Dε

∇∇∇× v · n̂ dS = 1
2πε

πε2 ∇∇∇×v(x0, y0, z0) · n̂
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so that

Ω = 1
2
∇∇∇×v(x0, y0, z0) · n̂

The component of ∇∇∇×v(x0, y0, z0) in any direction n̂ is twice the rate at which the paddle wheel

turns when it is put into the fluid at (x0, y0, z0) with its axle pointing in the direction n̂. The

direction of ∇∇∇ ×v(x0, y0, z0) is the axle direction which gives maximum rate of rotation and the

magnitude of ∇∇∇×v(x0, y0, z0) is twice that maximum rate of rotation. For this reason, ∇∇∇× v is

often referred to as a “vorticity” meter.
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