
The Heat Equation

Let T (x, y, z, t) be the temperature at time t at the point (x, y, z) in some body. The

heat equation is the partial differential equation that describes the flow of heat energy and

consequently the behaviour of T . We start by deriving the heat equation from two physical

“laws”, that we assume are valid:

• The amount of heat energy required to raise the temperature of a body by ∆T degrees

is CM∆T where, M is the mass of the body and C is a positive physical constant

determined by the material contained in the body. It is called the specific heat of the

body.

• Think of heat energy as a fluid. It has velocity field −k∇∇∇T (x, y, z, t), where k is

another positive physical constant called the thermal conductivity of the body. That

is, the rate at which heat is conducted across an element of surface area dS at (x, y, z)

in the direction of its unit normal n̂ is given by −kn̂ · ∇∇∇T (x, y, z, t) dS at time t. So

heat flows in the direction opposite to the temperature gradient. For example, in the
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the temperature gradient, which points in the direction of increasing temperature, is

opposite n̂. Consequently the flow rate −kn̂ · ∇∇∇T (x, y, z, t) dS is positive, indicating

flow in the direction of n̂. This is just what you would expect – heat flows from

hot regions to cold regions. Also the rate of flow increases as the magnitude of the

temperature gradient increases. This also makes sense.

Let V be any three dimensional region in the body and denote by ∂V the surface of V and

by n̂ the outward normal to ∂V . The amount of heat that enters V across an infinitesmal

piece dS of ∂V in an infinitesmal time interval dt is −
(

− kn̂ · ∇∇∇T (x, y, z, t) dS
)

dt, where

n̂ is the outward normal to ∂V . The amount of heat that enters V across all of ∂V in the

time interval dt is

∫∫

∂V

kn̂ · ∇∇∇T (x, y, z, t) dS dt

dS
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In this same time interval the temperature at a point (x, y, z) in V changes by
∂T
∂t

(x, y, z, t) dt. If the density of the body at (x, y, z) is ρ(x, y, z), the amount of heat
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energy required to increase the temperature of an infinitesmal volume dV of the body

centred at (x, y, z) by ∂T
∂t

(x, y, z, t) dt is Cρ dV ∂T
∂t

(x, y, z, t) dt. The amount of heat energy

required to increase the temperature by ∂T
∂t

(x, y, z, t) dt at all points (x, y, z) in V is

∫∫∫

V

Cρ∂T
∂t

(x, y, z, t) dV dt

Assuming that the body is not generating or destroying heat itself, this must be same as

the amount of heat that entered V in the time interval dt. That is

∫∫

∂V

kn̂ · ∇∇∇T dS dt =

∫∫∫

V

Cρ∂T
∂t

dV dt

Cancelling the common factors of dt and applying the divergence theorem to the left hand

side gives

∫∫∫

V

k∇∇∇ ·∇∇∇T dV =

∫∫∫

V

Cρ∂T
∂t

dV ⇒
∫∫∫

V

[

k∇∇∇2T − Cρ∂T
∂t

]

dV = 0 (1)

where ∇∇∇2 = ∇∇∇ ·∇∇∇ = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 is the Laplacian. This must be true for all volumes

V in the body and for all times t. I claim that this forces

k∇∇∇2T (x, y, z, t)− Cρ∂T
∂t

(x, y, z, t) = 0

for all (x, y, z) in the body and all t. Suppose that to the contrary we had, for example,

k∇∇∇2T (x0, y0, z0, t0) − Cρ∂T
∂t

(x0, y0, z0, t0) > 0 for some (x0, y0, z0) in the body. Then, by

continuity, we would have k∇∇∇2T (x, y, z, t0)− Cρ∂T
∂t

(x, y, z, t0) > 0 for all (x, y, z) in some

small ball B centered on (x0, y0, z0). Then, necessarily,

∫∫∫

B

[

k∇∇∇ ·∇∇∇T (x, y, z, t0)− Cρ∂T
∂t

(x, y, z, t0)
]

dV > 0

which violates (1) for V = B. This completes our derivation of the heat equation, which

is
∂T
∂t

(x, y, z, t) = κ∇∇∇2T (x, y, z, t)

where κ = k
Cρ

is called the thermal diffusivity.

As an application, we look at the temperature a bit below the surface of the Earth.

For simplicity, we make the Earth flat and we assume that the temperature, T , depends

only on time, t, and the vertical coordinate, z. Then the heat equation simplifies to

∂T
∂t

(z, t) = κ∂2T
∂z2 (z, t) (2)
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We choose a coordinate system having the surface of the Earth at z = 0 and having z

increase downward. We also assume that the temperature T (0, t) at the surface of the

Earth is primarily determined by solar heating and is given by

T (0, t) = T0 + TA cos(αt) + TD cos(δt) (3)

Here T0 is the long term average of the temperature at the surface of the Earth, TA cos(αt)

gives seasonal temperature variations and TD cos(δt) gives daily temperature variations.

z

air

earth
z = 0, T (0, t) = T0 + TA cos(αt) + TD cos(δt)

Tt = κTzz

We measure time in seconds so that δ = 2π
1 day

= 2π
86,400sec

and α = 2π
1 year

= 2π
3.15×107sec

.

Then TA cos(αt) has period one year and TD cos(δt) has period one day. I will just quote

the solution to (2) and (3). It is

T (z, t) = T0 + TAe
−
√

α

2κ
z cos

(

αt−
√

α
2κ

z
)

+ TDe−
√

δ

2κ
z cos

(

δt−
√

δ
2κ

z
)

(4)

If you have taken a course in partial differential equations, you can find this solution by

separation of variables. In any event, you can check that (4) satisfies both (2) and (3).

For any z, the time average of T (z, t) is T0, the same as the average temperature at the

surface z = 0. The term TAe
−
√

α

2κ
z cos

(

αt−
√

α
2κ

z
)

• oscillates in time with a period of one year, just like TA cos(αt)

• has an amplitude TAe
−
√

α

2κ
z which is TA at the surface and decreases exponentially

as z increases. Increasing the depth z by a distance
√

2κ
α

causes the amplitude to

decrease by a factor of 1
e
.

• has a time lag of z√
2κα

with respect to TA cos(αt). The surface term TA cos(αt)

takes its maximum value when t = 0, 2π
α
, 4π

α
, · · ·. At depth z, the correspond-

ing term TAe
−
√

α

2κ
z cos

(

αt−
√

α
2κ

z
)

takes its maximum value when αt−
√

α
2κ

z =

0, 2π, 4π, · · · so that t = z√
2κα

, 2π
α

+ z√
2κα

, 4π
α

+ z√
2κα

, · · ·.

Similarly, the term TDe−
√

δ

2κ
z cos

(

δt−
√

δ
2κ

z
)

• oscillates in time with a period of one day, just like TD cos(δt)

• has an amplitude which is TD at the surface and decreases by a factor of 1
e
for each

increase of
√

2κ
δ

in depth.

• has a time lag of z√
2κδ

with respect to TD cos(δt).

For soil κ ≈ 0.005 cm2/sec. This κ gives
√

2κ
α

≈ 2m
√

2κ
δ

≈ 10cm z√
2κα

≈ 0.3z days z√
2κδ

≈ 0.3z hours

for z measured in centimeters.
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