Hyperbolic Trig Functions

The hyperbolic trig functions are defined by

$$
\begin{array}{lll}
\sinh x=\frac{e^{x}-e^{-x}}{2} & \cosh x=\frac{e^{x}+e^{-x}}{2} & \tanh x=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} \\
\operatorname{csch} x=\frac{2}{e^{x}-e^{-x}} & \operatorname{sech} x=\frac{2}{e^{x}+e^{-x}} & \operatorname{coth} x=\frac{e^{x}+e^{-x}}{e^{x}-e^{-x}}
\end{array}
$$

As their names suggest, these functions are very closely related to the trig functions. This relationship may be seen from the formulae

$$
\begin{array}{lll}
\sin x=\frac{e^{i x}-e^{-i x}}{2 i} & \cos x=\frac{e^{i x}+e^{-i x}}{2} & \tan x=-i \frac{e^{i x}-e^{-i x}}{e^{i x}+e^{-i x}} \\
\csc x=\frac{2 i}{e^{i x}-e^{-i x}} & \sec x=\frac{2}{e^{i x}+e^{-i x}} & \cot x=i \frac{e^{x}+e^{-i x}}{e^{i x}-e^{-i x}}
\end{array}
$$

(If you are not familiar with these formulae, see the handout entitled "Complex Numbers and Exponentials".) In particular

$$
\sinh x=i \sin (-i x) \quad \cosh x=\cos (-i x)
$$

Consequently, the differentiation formulae for hyperbolic trig functions are almost identical to those for trig functions:

$$
\frac{d}{d x} \sinh x=\cosh x \quad \frac{d}{d x} \cosh x=\sinh x
$$

They differ only by some sign changes. Similarly, for each trig identity there is a corresponding hyperbolic trig identity, which is also identical up to sign changes:

$$
\begin{aligned}
& \cosh ^{2} x-\sinh ^{2} x=\frac{e^{2 x}+2+e^{-2 x}}{4}-\frac{e^{2 x}-2+e^{-2 x}}{4}=1 \\
& \sinh 2 x=\frac{e^{2 x}-e^{-2 x}}{2}=2 \sinh x \cosh x \\
& \cosh 2 x=\frac{e^{2 x}+e^{-2 x}}{2}=2 \cosh ^{2} x-1
\end{aligned}
$$

Example. Find $\int \sqrt{a^{2}+x^{2}} d x$.

Solution. The standard technique for integrating $\int \sqrt{a^{2}-x^{2}} d x$ is to substitute $x=a \sin t$ and exploit the trig identity $1-\sin ^{2} t=\cos ^{2} t$ to eliminate the square root. The analog here is to substitute $x=a \sinh t$ ($\sinh t$ is a strictly increasing function, so the change of variables is legitimate) and exploit $1+\sinh ^{2} t=\cosh ^{2} t$, which we do. Since $d x=a \cosh t d t$,

$$
\begin{aligned}
\int \sqrt{a^{2}+x^{2}} d x & =\int \sqrt{a^{2}+a^{2} \sinh ^{2} t} a \cosh t d t=\int \sqrt{a^{2} \cosh ^{2} t} a \cosh t d t \\
& =\int a^{2} \cosh ^{2} t d t
\end{aligned}
$$

Note that $\cosh t>0$ for all t, so we have correctly taken the positive square root. The standard technique for integrating $\int \cos ^{2} t d t$ exploits the trig identity $\cos ^{2} t=\frac{1+\cos 2 t}{2}$. To integrate $\int a^{2} \cosh ^{2} t d t$ we use $\cosh ^{2} t=\frac{1+\cosh 2 t}{2}$.

$$
\int a^{2} \cosh ^{2} t d t=a^{2} \int \frac{1+\cosh 2 t}{2} d t=\frac{a^{2}}{2}\left[t+\frac{1}{2} \sinh 2 t\right]+C
$$

To get back to the original variable x, sub in $t=\sinh ^{-1} \frac{x}{a}$ and use the identities $\sinh 2 t=$ $2 \sinh t \cosh t$ and $\cosh t=\sqrt{\sinh ^{2} t+1}$.

$$
\begin{aligned}
\frac{a^{2}}{2}\left[t+\frac{1}{2} \sinh 2 t\right] & =\frac{a^{2}}{2}[t+\sinh t \cosh t]=\frac{a^{2}}{2} t+\frac{a}{2} \sinh t \sqrt{a^{2} \sinh ^{2} t+a^{2}} \\
& =\frac{a^{2}}{2} \sinh ^{-1} \frac{x}{a}+\frac{1}{2} x \sqrt{x^{2}+a^{2}}
\end{aligned}
$$

All together

$$
\int \sqrt{a^{2}+x^{2}} d x=\frac{a^{2}}{2} \sinh ^{-1} \frac{x}{a}+\frac{1}{2} x \sqrt{x^{2}+a^{2}}+C
$$

In addition, the inverse hyperbolic trig function $\sinh ^{-1} x$ can be explicitly expressed in terms of \ln 's. By definition, $y=\sinh ^{-1} x$ is the unique solution of $\sinh y=x$, or

$$
\frac{e^{y}-e^{-y}}{2}=x \quad \Rightarrow \quad e^{y}-e^{-y}=2 x \quad \Rightarrow \quad e^{2 y}-1=2 x e^{y} \quad \Rightarrow \quad e^{2 y}-2 x e^{y}-1=0
$$

Think of this as a quadratic equation in e^{y}, with x just being a given constant. The solution, by the high school formula for the solution of a quadratic equation is

$$
e^{y}=\frac{2 x \pm \sqrt{4 x^{2}+4}}{2}=x \pm \sqrt{x^{2}+1}
$$

As y is a real number, e^{y} must be a positive number and we must reject the negative sign. Thus

$$
y=\sinh ^{-1} x=\ln \left(x+\sqrt{x^{2}+1}\right)
$$

and we may rewrite the above integral as

$$
\int \sqrt{a^{2}+x^{2}} d x=\frac{a^{2}}{2} \ln \left(x+\sqrt{x^{2}+a^{2}}\right)+\frac{1}{2} x \sqrt{x^{2}+a^{2}}+C^{\prime}
$$

(with the new constant $C^{\prime}=C-\frac{a^{2}}{2} \ln a$).

