
Integration on Manifolds

Manifolds

A manifold is a generalization of a surface. We shall give the definition shortly. These

notes are intended to provide a lightning fast introduction to integration on manifolds. For

a more thorough, but still elementary discussion, see

⊲ M.P. do Carmo, Differential forms and applications

⊲ Barrett O’Neill, Elementary Differential Geometry, Chapter 4

⊲ Walter Rudin, Principles of Mathematical Analysis, Chapter 10

⊲ Michael Spivak, Calculus on Manifolds; A Modern Approach to the Classical Theorems

of Advanced Calculus

Roughly speaking, an n–dimensional manifold is a set that looks locally like IRn. It is a

union of subsets each of which may be equipped with a coordinate system with coordinates

running over an open subset of IRn. By way of preliminaries, we’ll first generalize the

concept of an “open interval” of IR to an “open subset of IRn” and then to an “open

subset of a subset W” of IRn.

Definition M.1 Let n ≥ 1 be an integer.

(a) Let a ∈ IRn and ε > 0. The open ball of radius ε centred on a is

Bε(a) =
{
x ∈ IRn

∣
∣ |x− a| < ε

}

Note the strict inequality in |x− a| < ε.

(b) A subset O ⊂ IRn is said to be an “open subset of IRn” if, for each point a ∈ O, there

is an ε(a) > 0 such that Bε(a)(a) ⊂ O. Equivalently, O is open if and only if it is a

union of open balls, like, for example, O =
⋃

a∈O Bε(a)(a).

(c) Fix any W ⊂ IRn. A subset V ⊂ W is said to be an “open subset of W” if V = O∩W
for some open subet O of IRn. We’ll usually use this definition with W being some

curve or surface of interest.

Example M.2

(a) The “open rectangle” O =
{

(x, y) ∈ IR2
∣
∣ 0 < x < 1, 0 < y < 1

}
is an open

subset of IR2 because any point a = (x0, y0) ∈ O is a nonzero distance, namely

d = min
{
x0, 1− x0, y0, 1− y0

}
> 0 away from the boundary of O. So the open ball

Bd/2(a) is contained in O.

(b) The “closed rectangle” C =
{
(x, y) ∈ IR2

∣
∣ 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

}
is an not open

subset of IR2. For example, (0, 0) is a point in C. No matter what ε > 0 we pick, the
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open ball Bε(0, 0) is not contained in C because Bε(0, 0) contains the point (− ε
2 , 0),

which is not in C.

O C
Br(c)

(c) Let c ∈ IRn and r > 0. The open ball Bc(r) is an open subset of IRn because any

point a ∈ Bc(r) is a nonzero distance, namely d = r−|a−c| away from the boundary

of Bc(r). So the open ball Bd/2(a) is contained in Bc(r).

(d) Let W =
{
(x, y) ∈ IR2

∣
∣ y = 0, x ≥ 0

}
be the positive x–axis in IR2. It is not an

open subset of IR2 because for any point (x0, 0) ∈ W and any ε > 0, the ball Bε(x0, 0)

contains points with nonzero y–coordinates and so is not contained in W. On the

other hand the intervals
{
(x, 0)

∣
∣ 2 < x < 4

}
= B1

(
(3, 0)

)
∩W and

{
(x, 0)

∣
∣ 0 ≤ x < 1

}
= B1

(
(0, 0)

)
∩W

are open subsets of W while
{
(x, 0)

∣
∣ 5 ≤ x ≤ 7

}
is not an open subset of W.

B1(0, 0) B1(3, 0)

5 7

Definition M.3 Let 0 < n ≤ N be integers. Let M be a subset of IRN . We now define

what is meant by the statement that M is an n–dimensional C∞ manifold(1).

(a) A chart (or coordinate patch) on M is a pair {U , ϕ} with

◦ U an open subset of M and

◦ ϕ a map from U to an open subset of IRn that is 1–1, onto and continuous and

that has a continuous inverse. (Such a map is said to be a homeomorphism.)

Think of ϕ as assigning coordinates to each point of U .
(b) Two charts {U , ϕ} and {V, ψ} are said to be compatible if the transition functions

ψ ◦ ϕ−1 : ϕ(U ∩ V) ⊂ IRn → ψ(U ∩ V) ⊂ IRn

ϕ ◦ ψ−1 : ψ(U ∩ V) ⊂ IRn → ϕ(U ∩ V) ⊂ IRn

U V
U∩V

M

ϕ ψ

ϕ(U∩V) ψ(U∩V)

ψ ◦ ϕ−1

ϕ ◦ ψ−1

are C∞. That is, all partial derivatives of all orders of ψ ◦ϕ−1 and ϕ ◦ ψ−1 exist and

(1) Actually, the standard definition is more general than the definition that I am about to give.
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are continuous.

(c) An atlas for M is a family A =
{
{Ui, ϕi}

∣
∣ i ∈ I

}
of charts on M such that

{
Ui
}

i∈I

is an open cover of M (i.e. the union ∪i∈IUi = M) and such that every pair of charts

in A are compatible. The index set I is completely arbitrary. It could consist of just

a single index. It could consist of uncountably many indices. An atlas A is called

maximal if every chart {U , ϕ} on M that is compatible with every chart of A is itself

in A.

(d) An n-dimensional manifold consists of a metric space M together with a maximal

atlas A.

Problem M.1 Let A be an atlas for the metric space M. Prove that there is a unique

maximal atlas for M that contains A.

Problem M.2 Let U and V be open subsets of a metric space M. Let ϕ be a homeo-

morphism from U to an open subset of IRn and ψ be a homeomorphism from V to an open

subset of IRm. Prove that if U ∩ V is nonempty and

ψ ◦ ϕ−1 : ϕ(U ∩ V) ⊂ IRn → ψ(U ∩ V) ⊂ IRm

ϕ ◦ ψ−1 : ψ(U ∩ V) ⊂ IRm → ϕ(U ∩ V) ⊂ IRn

are C∞, then m = n.

Thanks to Problem M.1, it suffices to supply any, not necessarily maximal, atlas for a

subset M ⊂ IRN to turn it into a manifold. We do exactly that in each of the following

examples.

Example M.4 (Open Subset of IRN) Let 1lN be the identity map on IRN . Then
{
{IRN , 1lN}

}
is an atlas for IRN . Indeed, if U is any nonempty, open subset of IRN , then

{
{U , 1lN}

}
is an atlas for U . So every open subset of IRN is naturally a C∞ manifold.

Example M.5 (The Circle) The circle S1 =
{
(x, y) ∈ IR2

∣
∣ x2+y2 = 1

}
is a manifold

of dimension one when equipped with, for example, the atlas A = {(U1, ϕ1), (U2, ϕ2)}
where

U1 = S1 \ {(−1, 0)} ϕ1(x, y) = arctan y
x
with − π < ϕ1(x, y) < π ϕ1

U1
U2 = S1 \ {(1, 0)} ϕ2(x, y) = arctan y

x with 0 < ϕ2(x, y) < 2π

My use of arctan y
x here is pretty sloppy. To define, ϕ1 carefully, we can say that ϕ1(x, y)

is the unique −π < θ < π such that (x, y) = (cos θ, sin θ). To verify that these two charts
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are compatible, we first determine the domain intersection U1 ∩ U2 = S1 \ {(−1, 0), (1, 0)}
and then the ranges ϕ1(U1 ∩ U2) = (−π, 0) ∪ (0, π) and ϕ2(U1 ∩ U2) = (0, π) ∪ (π, 2π) and

finally, we check that

ϕ2 ◦ ϕ−1
1 (θ) =

{
θ if 0 < θ < π
θ + 2π if −π < θ < 0

}

ϕ1 ◦ ϕ−1
2 (θ) =

{
θ if 0 < θ < π
θ − 2π if π < θ < 2π

}

are indeed C∞.

Example M.6 (The n–Sphere) Let 1 ≤ n and N = n+ 1 be integers. The n–sphere

Sn =
{
x = (x1, · · · , xn+1) ∈ IRn+1

∣
∣ x21 + · · ·+ x2n+1 = 1

}

is a manifold of dimension n when equipped with the atlas

A1 =
{
(Ui, ϕi), (Vi, ψi)

∣
∣ 1 ≤ i ≤ n+ 1

}

where, for each 1 ≤ i ≤ n+ 1,

Ui =
{
(x1, · · · , xn+1) ∈ Sn

∣
∣ xi > 0

}
ϕi(x1, · · · , xn+1) = (x1, · · · , xi−1, xi+1, · · · , xn+1)

Vi =
{
(x1, · · · , xn+1) ∈ Sn

∣
∣ xi < 0

}
ψi(x1, · · · , xn+1) = (x1, · · · , xi−1, xi+1, · · · , xn+1)

So both ϕi and ψi just discard the coordinate xi. They project onto IRn, viewed as the

hyperplane xi = 0. Another possible atlas, compatible withA1, isA2 =
{ (

U , ϕ
)
,
(
V, ψ

) }

where the domains U = Sn \ {(0, · · · , 0, 1)} and V = Sn \ {(0, · · · , 0,−1)} and

ϕ(x1, · · · , xn+1) =
(

2x1

1−xn+1
, · · · , 2xn

1−xn+1

)

ψ(x1, · · · , xn+1) =
(

2x1

1+xn+1
, · · · , 2xn

1+xn+1

)

(0,···,0,1)

(0,···,0)

x

ϕ(x)

are the stereographic projections from the north and south poles, respectively. Both ϕ

and ψ have range IRn. So we can think of Sn as IRn plus an additional single “point at

infinity”.

Problem M.3 In this problem we use the notation of Example M.6.

(a) Prove that A1 is an atlas for Sn.

(b) Prove that A2 is an atlas for Sn.
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Example M.7 (Surfaces) Let m,n ≥ 1 be integers and set N = n +m. Any smooth

n–dimensional surface in IRn+m is an n–dimensional manifold. Roughly speaking, a subset

of IRn+m is an n–dimensional surface if, locally, m of the m + n coordinates of points on

the surface are determined by the other n coordinates in a C∞ way. For example, the unit

circle S1 is a one dimensional surface in IR2. Near (0, 1) a point (x, y) ∈ IR2 is on S1 if

and only if y =
√
1− x2, and near (−1, 0), (x, y) is on S1 if and only if x = −

√

1− y2.

The precise definition is that M is an n–dimensional surface in IRn+m if M is a subset

of IRn+m with the property that for each z = (z1, · · · , zn+m) ∈ M, there are

◦ an open subset Uz of IRn+m that contains z,

◦ n integers 1 ≤ j1 < j2 < · · · < jn ≤ n+m

◦ and m C∞ functions fk(xj1 , · · · , xjn), k ∈ {1, · · · , n+m} \ {j1, · · · , jn}
such that the point x = (x1, · · · , xn+m) ∈ Uz is in M if and only if xk = fk(xj1 , · · · , xjn)
for all k ∈ {1, · · · , n +m} \ {j1, · · · , jn}. That is, we may express the part of M that is

near z as

xi1 = fi1
(
xj1 , xj2 , · · · , xjn

)

xi2 = fi2
(
xj1 , xj2 , · · · , xjn

)

...

xim = fim
(
xj1 , xj2 , · · · , xjn

)

x

z

(xj1 , · · · , xjn)

Uz

M

where
{
i1, · · · , im} = {1, · · · , n+m} \ {j1, · · · , jn}

for some C∞ functions f1, · · · , fm. We may use xj1 , xj2 , · · · , xjn as coordinates for M in

M∩Uz. Of course, an atlas is A =
{
(Uz∩M, ϕz)

∣
∣ z ∈M

}
, with ϕz(x) = (xj1 , · · · , xjn).

Equivalently, M is an n–dimensional surface in IRn+m, if, for each z ∈ M, there are

◦ an open subset Uz of IRn+m that contains z,

◦ and m C∞ functions gk : Uz → IR, with the vectors
{
∇∇∇gk(z)

∣
∣ 1 ≤ k ≤ m

}
linearly

independent

such that the point x ∈ Uz is in M if and only if gk(x) = 0 for all 1 ≤ k ≤ m. To get

from the implicit equations for M given by the gk’s to the explicit equations for M given

by the fk’s one need only invoke (possibly after renumbering the components of x) the

Implicit Function Theorem

Let m,n ∈ IN and let U ⊂ IRn+m be an open set. Let g : U → IRm be C∞

with g(x0,y0) = 0 for some x0 ∈ IRn, y0 ∈ IRm with (x0,y0) ∈ U . Assume that

det
[
∂gi
∂yj

(x0,y0)
]

1≤i,j≤m
6= 0. Then there exist open sets V ⊂ IRn+m and W ⊂ IRn

with x0 ∈W and (x0,y0) ∈ V such that

for each x ∈W , there is a unique (x,y) ∈ V with g(x,y) = 0.
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If the y above is denoted f(x), then f : W → IRm is C∞, f(x0) = y0 and g
(
x, f(x)

)
= 0

for all x ∈W .

(x,y)

(x0,y0)

x x0

U

V

W

g(x,y) = 0

x ∈ IRn

y ∈ IRm

The n–sphere Sn is the n–dimensional surface in IRn+1 given implicitly by the equa-

tion g(x1, · · · , xn+1) = x21 + · · · + x2n+1 − 1 = 0. In a neighbourhood of the north

pole (for example, the northern hemisphere), Sn is given explicitly by the equation

xn+1 =
√

x21 + · · ·+ x2n.

If you think of the set of all 3×3 real matrices as IR9 (because a 3×3 matrix has 9 matrix

elements) then

SO(3) =
{

3× 3 real matrices R
∣
∣ RtR = 1l, detR = 1

}

is a 3–dimensional surface in IR9. We shall look at it more closely in Example M.9,

below. SO(3) is the group of all rotations about the origin in IR3 and is also the set of all

orientations of a rigid body with one point held fixed.

Example M.8 (A Torus) The torus T 2 is the two dimensional surface

T 2 =
{
(x, y, z) ∈ IR3

∣
∣
(√

x2 + y2 − 1
)2

+ z2 = 1
4

}

in IR3. In cylindrical coordinates x = r cos θ, y = r sin θ, z = z, the equation of the

torus is (r − 1)2 + z2 = 1
4 . Fix any θ, say θ0. Recall that the set of all points in

y

z

x

θ0 ϕ

IR3 that have θ = θ0 is like one page in an open book. It is a half–plane that starts
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at the z axis. The intersection of the torus with that half plane is a circle of radius 1
2

centred on r = 1, z = 0. As ϕ runs from 0 to 2π, the point r = 1 + 1
2 cosϕ, z = 1

2 sinϕ,

θ = θ0 runs over that circle. If we now run θ from 0 to 2π, the circle on the page sweeps

out the whole torus. So, as ϕ runs from 0 to 2π and θ runs from 0 to 2π, the point

(x, y, z) =
(
(1 + 1

2 cosϕ) cos θ, (1 +
1
2 cosϕ) sin θ,

1
2 sinϕ

)
runs over the whole torus. So we

may build coordinate patches for T 2 using θ and ϕ (with ranges (0, 2π) or (−π, π)) as

coordinates.

Example M.9 (O(3), SO(3)) As a special case of Example M.7 we have the groups

SO(3) =
{

3× 3 real matrices R
∣
∣ RtR = 1l3, detR = 1

}

O(3) =
{

3× 3 real matrices R
∣
∣ RtR = 1l3

}

of rotations and rotations/reflections in IR3. (Rotations and reflections are the angle and

length preserving linear maps. In classical mechanics, SO(3) is the set of all possible

configurations of rigid body with one point held fixed.) We can identify the set of all 3× 3

real matrices with IR9, because a 3× 3 matrix has 9 matrix elements. The restriction that

R =





a1 b1 c1
a2 b2 c2
a3 b3 c3



 ∈ O(3)

is given implicitly by the following six equations.

(
RtR

)

1,1
= a21 + a22 + a23 = 1 i.e. |a| = 1

(
RtR

)

2,2
= b21 + b22 + b23 = 1 i.e. |b| = 1

(
RtR

)

3,3
= c21 + c22 + c23 = 1 i.e. |c| = 1

(
RtR

)

1,2
=

(
RtR

)

2,1
= a1b1 + a2b2 + a3b3 = 0 i.e. a ⊥ b

(
RtR

)

1,3
=

(
RtR

)

3,1
= a1c1 + a2c2 + a3c3 = 0 i.e. a ⊥ c

(
RtR

)

2,3
=

(
RtR

)

3,2
= b1c1 + b2c2 + b3c3 = 0 i.e. b ⊥ c

(M.1)

We can verify the independence conditions of Example M.7 (that the gradients of the left

hand sides are independent) directly. See Problems M.5 and M.6, below. Or we can argue

geometrically. In a neighbourhood of any fixed element, R̃, of SO(3), we may use two of

the three a–components as coordinates. (In fact we may use any two a–coordinates whose

magnitude at R̃ is not one.) Once two components of a have been chosen, the third a–

component is determined up to a sign by the requirement that |a| = 1. The sign is chosen

so as to remain in the neighbourhood. Once a has been chosen, the set
{
b ∈ IR3

∣
∣ b ⊥ a

}

is a plane through the origin so that
{
b ∈ IR3

∣
∣ b ⊥ a, |b| = 1

}
is the intersection of

that plane with the unit sphere. So b lies on a great circle of the unit sphere. Thus b
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is determined up to a single rotation angle by the requirements that b ⊥ a and |b| = 1.

That rotation angle is the third coordinate. Once a and b have been chosen, the set
{
c ∈ IR3

∣
∣ c ⊥ a, c ⊥ b

}
is a line through the origin. So c is determined up to a sign by

the requirements that c ⊥ a,b and |c| = 1. Again, the sign is chosen so as to remain in the

neighbourhood. So O(3) is a manifold of dimension 3. Any element of O(3) automatically

obeys
(
detR

)2
= detRtR = det 1l3 = 1 =⇒ detR = ±1

So SO(3) is just one of the two connected components of O(3). It is an important example

of a Lie group, which is, by definition, a C∞ manifold that is also a group with the

operations of multiplication and taking inverses continuous.

Problem M.4 Let R ∈ O(3).

(a) Prove that if λ is an eigenvalue of R, then |λ| = 1 and λ̄ is an eigenvalue of R.

(b) Prove that at least one eigenvalue of R is either +1 or −1.

(c) Prove that the columns of R are mutually perpendicular and are each of unit length.

(d) Prove that R is either a rotation, a reflection or a composition of a rotation and a

reflection.

Problem M.5 Denote by g1, · · · , g6 the left hand sides of (M.1). Prove that the gradients

of g1, · · · , g6, evaluated at any R ∈ O(3), are linearly independent.

Problem M.6 Use the implicit function theorem to prove that for each 1 ≤ i, j ≤ 3, the

(i, j) matrix element, aij , of matrices R =
[
aij

]

1≤i,j≤3
in a neighbourhood of 1l in SO(3),

is a C∞ function of the matrix elements a21, a31 and a32.

Example M.10 (The Cartesian Product) If M is a manifold of dimension m with

atlas A and N is a manifold of dimension n with atlas B then

M×N =
{
(x, y)

∣
∣ x ∈ M, y ∈ N

}

is an (m+ n)–dimensional manifold with atlas

{ (
U × V, ϕ⊕ ψ

) ∣
∣ (U, ϕ) ∈ A, (V, ψ) ∈ B

}
where ϕ⊕ ψ

(
(x, y)

)
=

(
ϕ(x), ψ(y)

)

For example, IRm × IRn = IRm+n, S1 × IR is a cylinder, S1 × S1 is a torus and the config-

uration space of a rigid body is IR3 × SO(3) (with the IR3 components giving the location

of the centre of mass of the body and the SO(3) components giving the orientation).
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Definition M.11

(a) A function f from a manifold M to a manifold N (it is traditional to omit the atlas

from the notation) is said to be C∞ at m ∈ M if there exists a chart {U , ϕ} for M
and a chart {V, ψ} for N such that m ∈ U , f(m) ∈ V and ψ ◦ f ◦ϕ−1 is C∞ at ϕ(m).

(b) Two manifolds M and N are diffeomorphic if there exists a function f : M → N that

is 1–1 and onto with f and f−1 C∞ everywhere. Then you should think of M and N
as the same manifold with m and f(m) being two different names for the same point,

for each m ∈ M.

Problem M.7 Let M and N be manifolds. Prove that f : M → N is C∞ at m ∈ M if

and only if ψ ◦ f ◦ φ−1 is C∞ at φ(m) for every chart (U , φ) for M with m ∈ U and every

chart (V, ψ) for N with f(m) ∈ V.

Problem M.8 Prove that IRn is diffeomorphic to
{
x ∈ IRn

∣
∣
∑n

i=1 x
2
i < 1

}
.

Problem M.9 Prove that IRn is not diffeomorphic to Sn.

Problem M.10 Outline an argument to prove that the disk
{
x ∈ IR2

∣
∣ x2 + y2 < 2

}
is

not diffeomorphic to the annulus
{
x ∈ IR2

∣
∣ 1 < x2 + y2 < 2

}
.

Problem M.11 In this problem G = SO(3).

a) Fix any a ∈ G. Denote by I =
{
(i, j) ∈ IN2

∣
∣ 1 ≤ i ≤ 3, 1 ≤ j ≤ 3

}
the set of indices

for the matrix elements of the matrices in G. Prove that there exist α, β, γ ∈ I such

that every matrix element gδ, δ ∈ I is a C∞ function of gα, gβ , gγ for matrices g ∈ G

in a neighbourhood of a.

b) Prove that a curve q : (c, d) → G is C∞ if and only if every matrix element q(t)i,j is

C∞.

c) Prove that matrix multiplication (a, b) 7→ ab is a C∞ function from G×G to G.

d) Prove that the inverse function a 7→ a−1 is a C∞ function from G to G.
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Integration

We now move onto integration. I shall explicitly define integrals over 0–, 1– and 2–

dimensional regions of a two dimensional manifold and prove a generalization of Stokes’

theorem. I am restricting to low dimensions purely for pedagogical reasons. The same

ideas also work for higher dimensions. Before getting into the details, here is a little

motivational discussion.

A curve, i.e. a region that can be parametrized by a function of one real variable,

is a 1–dimensional region. We shall allow as a domain of integration for a 1–dimensional

integral any finite union of, possibly disconnected, curves. We shall call this a 1–chain.

You have considered two types of integrals over curves.

The first was used to compute, for example, the lengths of curves. You took a curve,

cut it up into a union of “infinitesimal pieces”, computed the length of each infinitesimal

piece by viewing it as a line segment, and added up the lengths of all of the different pieces

using an integral. There is a class of manifolds, called Riemannian manifolds, on which

this construction can be implemented. But we shall not consider that type of integral here.

The second type of line integral is a “work–type” integral. Here is one way such an

integral can arise. Suppose we have a particle moving in a force field (for example, a

gravitational field) in IR3. A force field is just a function F : IR3 → IR3 with F(r) being

the force felt by the particle when it is at r. If the particle has mass m and is at r(t) at

time t, then according to Newton’s law of motion, the acceleration a(t) = d2r
dt2 (t) of the

particle at time t is determined by

md2r
dt2 (t) = F

(
r(t)

)

Dot both sides of this equation with the velocity vector v(t) = dr
dt
(t) and observe that

the resulting left hand side md2r
dt2 (t) · drdt (t) = d

dt

(
1
2mv(t)2

)
is a perfect derivative. If we

integrate both sides of
d
dt

(
1
2mv(t)2

)
= F

(
r(t)

)
· drdt (t)

with respect to t from an initial time t1 to a final time t2 and apply the fundamental

theorem of calculus, we get

1
2mv(t2)

2 − 1
2mv(t1)

2 =

∫ t2

t1

F
(
r(t)

)
· drdt (t) dt

The quantity 1
2mv(t)2 is called the kinetic energy of the particle at time t. So the change

in kinetic energy between time t1 and time t2 is given by the, so called, work integral
∫ t2
t1

F
(
r(t)

)
· drdt (t) dt. If we call C the path followed by the particle, this integral is

often denoted
∫

C
F · dr =

∫

C
F1dx + F2dy + F3dz, where F =

(
F1, F2, F3

)
. This is the
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type of integral that we shall define on general manifolds. The object being integrated,

F1dx+ F2dy + F3dz will be called a 1–form.

Similarly a 0–dimensional domain of integration will consist of a finite union of points

and will be called a 0–chain. A 2–dimensional domain of integration will consist of a finite

union of surfaces, i.e. regions that we can parametrize by functions of two real variables,

and will be called a 2–chain. The object integrated in an n–dimensional integral will be

called an n–form. The definitions will be chosen so that (a) we can use local coordinate

systems to express our integrals in terms of ordinary first and second year calculus integrals

for evaluation, but at the same time (b) the answer to the integral so obtained does not

depend on which coordinate systems are used.

We now move on to formulating the definitions associated with integration on man-

ifolds. The formulations I have chosen are far from the most elegant ones available. But

they are what you actually use when you compute integrals and they get us to integration

and to Stokes’ theorem relatively quickly. For the rest of these notes, assume that M is

a two dimensional C∞ manifold with maximal atlas A. Except where explicitly stated

otherwise, all functions are assumed to be C∞.

0–dimensional Integrals

Definition M.12

(a) A 0–form is a function F : M → C.

(b) A 0–chain is an expression of the form n1P1 + · · · + nkPk with P1, · · · , Pk distinct

points of M and n1, · · ·nk ∈ ZZ.

(c) If F is a 0–form and n1P1 + · · ·+ nkPk is a 0–chain, then we define the integral

∫

n1P1+···+nkPk

F = n1F (P1) + · · ·+ nkF (Pk)

The definition of a chain given in part (b) is somewhat casual. Under a more formal

definition, a 0–chain is a function σ : M → ZZ for which σ(P ) is zero for all but finitely

many P ∈ M. The function σ : M → ZZ which corresponds to n1P1 + · · · + nkPk has

σ(P ) = ni when P = Pi for some 1 ≤ i ≤ k and σ(P ) = 0 if P /∈ {P1, · · · , Pk}. Addition

of 0–chains and multiplication of a 0–chain by an integer are defined by

(σ + σ′)(P ) = σ(P ) + σ′(P ) (nσ)(P ) = nσ(P )
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1–dimensional Integrals

Definition M.13

(a) A 1–form ω is a rule which assigns to each coordinate chart {U , ζ = (x, y)} a pair

(f, g) of functions on ζ(U) in a coordinate invariant manner (to be defined in one

sentence). We write

ω
∣
∣
{U,ζ}

= f dx+ g dy

to indicate that ω assigns the pair (f, g) to the chart {U, ζ}. That ω is coordinate

invariant means that

◦ if {U, ζ} and {Ũ , ζ̃} are two charts with U ∩ Ũ 6= ∅ and

◦ if ω assigns to {U, ζ} the pair of functions (f, g) and assigns to {Ũ , ζ̃} the pair of

functions (f̃ , g̃) and

◦ if the transition function ζ̃ ◦ ζ−1
(
from ζ(U ∩ Ũ) ⊂ IR2 to ζ̃(U ∩ Ũ) ⊂ IR2

)
is

(
x̃(x, y), ỹ(x, y)

)
,

then
f(x, y) = f̃

(
x̃(x, y), ỹ(x, y)

)
∂x̃
∂x (x, y) + g̃

(
x̃(x, y), ỹ(x, y)

)
∂ỹ
∂x (x, y)

g(x, y) = f̃
(
x̃(x, y), ỹ(x, y)

)
∂x̃
∂y

(x, y) + g̃
(
x̃(x, y), ỹ(x, y)

)
∂ỹ
∂y

(x, y)

Motivation, and a memory aid, for the above coordinate transformation rule is pro-

vided in Remark M.14, below.

(b) A path is a map C : [0, 1] → M.

A 1–chain is an expression of the form n1C1 + · · · + nkCk with C1, · · · , Ck distinct

paths and n1, · · ·nk ∈ ZZ.

(c) Let
{
U, ζ = (x, y

)}
be a coordinate chart for M and let ω

∣
∣
{U,ζ}

= f dx + g dy. If

c(t) : [0, 1] → U ⊂ M is a path with range in U , then we define the integral

∫

c

ω =

∫ 1

0

[

f
(

∈IR2

︷ ︸︸ ︷

ζ( c(t)
︸︷︷︸

∈M

)
)

︸ ︷︷ ︸

∈C

d
dtx(c(t)) + g

(
ζ(c(t))

)
d
dty(c(t))

]

dt

If c does not have range in a single chart, split it up into a finite number of pieces, each

with range in a single chart. The answer is independent of choice of chart(s), because

ω is invariant under coordinate transformations. See part (b) of Remark M.14 and

Problem M.12.

(d) If ω is a 1–form and n1C1 + · · ·nkCk is a 1–chain, then we define the integral

∫

n1C1+···nkCk

ω = n1

∫

C1

ω + · · ·+ nk

∫

Ck

ω
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(e) Addition of 1–forms and multiplication of a 1–form by a function on M are defined

as follows. Let α : M → C and let
{
U, ζ = (x, y

)}
be a coordinate chart for M. If

ω1

∣
∣
{U,ζ}

= f1 dx+ g1 dy and ω2

∣
∣
{U,ζ}

= f2 dx+ g2 dy, then

(
ω1 + ω2

)∣
∣
{U,ζ}

=
(
f1 + f2) dx+

(
g1 + g2

)
dy

(
αω1

)∣
∣
{U,ζ}

=
(
α ◦ ζ−1 f1

)
dx+

(
α ◦ ζ−1g1

)
dy

.

Remark M.14

(a) For now think of f dx+g dy just as a piece of notation which specifies the two functions

(f, g) that ω assigns to the chart {U, ζ = (x, y)}. We will later define an operator d that

maps n–forms to (n+ 1)–forms. In particular, it will map the coordinate function x,

which is a zero form (but which is only defined on part of the manifold) to the 1–form

1dx+ 0dy.

(b) The integral of part (c) is a generalization of the calculus definition of a “work–type”

integral along a parametrized line.

(c) The motivation for the definition of a 1–form is the ordinary change of variables

rule for an integral along a curve. Suppose that
(
x̃(x, y), ỹ(x, y)

)
expresses (x̃, ỹ)–

coordinates as a function of (x, y)–coordinates. If
(
X(t), Y (t)

)
is a parametrized

curve in (x, y)–coordinates, then X̃(t) = x̃
(
X(t), Y (t)

)
, Ỹ (t) = ỹ

(
X(t), Y (t)

)
provides

a parametrization of the same curve in (x̃, ỹ) coordinates. Substituting

X̃(t) = x̃
(
X(t), Y (t)

)
Ỹ (t) = ỹ

(
X(t), Y (t)

)

and
dX̃
d t (t) =

∂x̃
∂x

(
X(t), Y (t)

)
dX
d t (t) +

∂x̃
∂y

(
X(t), Y (t)

)
dY
d t (t)

dỸ
dt (t) =

∂ỹ
∂x

(
X(t), Y (t)

)
dX
d t (t) +

∂ỹ
∂y

(
X(t), Y (t)

)
dY
d t (t)

into the definition
∫

f̃(x̃, ỹ) dx̃+ g̃(x̃, ỹ) dỹ =

∫
{
f̃
(
X̃(t), Ỹ (t)

)
dX̃
d t

(t) + g̃
(
X̃(t), Ỹ (t)

)
dỸ
dt

(t)
}
dt

of the line integral gives
∫

f̃(x̃, ỹ) dx̃+ g̃(x̃, ỹ) dỹ

=

∫ {[
f̃
(
x̃(x, y), ỹ(x, y)

)
∂x̃
∂x

(
x, y

)
+ g̃

(
x̃(x, y), ỹ(x, y)

)
∂ỹ
∂x

(
x, y

)]

x=X(t),y=Y (t)
dX
d t (t)

+
[
f̃
(
x̃(x, y), ỹ(x, y)

)
∂x̃
∂y

(
x, y

)
+ g̃

(
x̃(x, y), ỹ(x, y)

)
∂ỹ
∂y

(
x, y

)]

x=X(t),y=Y (t)
dY
d t (t)

}

dt

=

∫

f(x, y) dx+ g(x, y) dy
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with
f(x, y) = f̃

(
x̃(x, y), ỹ(x, y)

)
∂x̃
∂x

(x, y) + g̃
(
x̃(x, y), ỹ(x, y)

)
∂ỹ
∂x

(x, y)

g(x, y) = f̃
(
x̃(x, y), ỹ(x, y)

)
∂x̃
∂y (x, y) + g̃

(
x̃(x, y), ỹ(x, y)

)
∂ỹ
∂y (x, y)

This is exactly the coordinate transformation rule of part (a) of Definition M.13.

(d) To remember the coordinate transformation rule, just remember

dx̃ = ∂x̃
∂x (x, y) dx+

∂x̃
∂y (x, y) dy

dỹ = ∂ỹ
∂x

(x, y) dx+ ∂ỹ
∂y

(x, y) dy

Substituting this into

f̃dx̃+ g̃dỹ = f̃ ∂x̃
∂x
dx+ f̃ ∂x̃

∂y
dy + g̃ ∂ỹ

∂x
dx+ g̃ ∂ỹ

∂y
dy

=
{
f̃ ∂x̃∂x + g̃ ∂ỹ∂x

}
dx+

{
f̃ ∂x̃∂y + g̃ ∂ỹ∂y

}
dy

and matching the result with f dx+ g dy gives

f = f̃ ∂x̃
∂x

+ g̃ ∂ỹ
∂x

g = f̃ ∂x̃
∂y

+ g̃ ∂ỹ
∂y

Putting in the only arguments that make sense, gives the detailed coordinate trans-

formation rule.

Problem M.12 Let M be a manifold, ω be a 1–form on M and c(t) : [0, 1] → M
be a path in M. Prove that the definition of

∫

c
ω given in part (c) of Definition M.13

is independent of the decomposition of c into finitely many pieces and of the choice of

coordinate charts.

2–dimensional Integrals

Definition M.15

(a) A 2–form Ω is a rule which assigns to each chart {U, ζ} a function f on ζ(U) such

that Ω
∣
∣
{U,ζ}

= f dx ∧ dy is invariant under coordinate transformations. This means

that

◦ if {U, ζ} and {Ũ , ζ̃} are two charts with U ∩ Ũ 6= ∅ and

◦ if Ω assigns {U, ζ} the function f and assigns {Ũ , ζ̃} the function f̃ and

◦ if the transition function ζ̃ ◦ ζ−1
(
from ζ(U ∩ Ũ) ⊂ IR2 to ζ̃(U ∩ Ũ) ⊂ IR2

)
is

(
x̃(x, y), ỹ(x, y)

)
,

then

f(x, y) = f̃
(
x̃(x, y), ỹ(x, y)

)[
∂x̃
∂x (x, y)

∂ỹ
∂y (x, y)− ∂x̃

∂y (x, y)
∂ỹ
∂x (x, y)

]
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(b) The standard 2–simplex is

Q2 =
{
(x, y) ∈ IR2

∣
∣ x, y ≥ 0, x+ y ≤ 1

}

A surface is a map D : Q2 → M.

A 2–chain is an expression of the form n1D1 + · · ·nkDk with D1, · · · , Dk surfaces and

n1, · · ·nk ∈ ZZ.

(c) Let {U, ζ = (x, y
)
} be a chart and let Ω

∣
∣
U,ζ

= f(x, y) dx∧ dy. If D : Q2 → U ⊂ M is

a surface with range in U , then we define the integral
∫

D

Ω =

∫∫

Q2

f
(
ζ(D(s, t))

)[
∂
∂sx

(
D(s, t)

)
∂
∂ty

(
D(s, t)

)

− ∂
∂tx

(
D(s, t)

)
∂
∂sy

(
D(s, t)

)]
dsdt

If D does not have range in a single chart, split it up into a finite number of pieces,

each with range in a single chart. This can always be done, since the range of D is

always compact. The answer is independent of choice of chart(s).

(d) If Ω is a 2–form and n1D1 + · · ·nkDk is a 2–chain, then we define the integral

∫

n1D1+···nkDk

Ω = n1

∫

D1

Ω+ · · ·+ nk

∫

Dk

Ω

Remark M.16

(a) Once again think, for now, of f dx ∧ dy as just a piece of notation which specifies the

function f that Ω assigns to the chart {U, ζ = (x, y)}. We will later define a wedge

product ∧. Then dx ∧ dy will really be the wedge product of the 1–forms dx and dy

and f dx ∧ dy will be the wedge product of the 0–form f and the 2–form dx ∧ dy.

Under the normal notation convention, the wedge product of a 0–form f and any form

ω is written fω, rather than f ∧ ω.
(b) The motivation for the coordinate transformation rule of a 2–form given in Definition

M.15.a is the ordinary change of variables rule

∫

f̃(x̃, ỹ) dx̃dỹ =

∫

f̃
(
x̃(x, y), ỹ(x, y)

)

∣
∣
∣
∣
∣
det

[
∂x̃
∂x(x, y)

∂ỹ
∂x (x, y)

∂x̃
∂y

(x, y) ∂ỹ
∂y

(x, y)

]∣
∣
∣
∣
∣
dxdy

=

∫

f̃
∣
∣∂x̃
∂x

∂ỹ
∂y

− ∂x̃
∂y

∂ỹ
∂x

∣
∣ dxdy

for an integral on a region in IR2, except for the absolute value signs. So we are dealing

with oriented (i.e. signed) areas.

(c) The integral over Q2 in part (c) of Definition M.15 is the standard multivariable

calculus expression for an integral over a parametrized region in IR2.
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The Wedge Product

We now define a multiplication rule on the space of forms. If ω is a k–form and ω′ is

a k′–form then the product will be a (k + k′)–form (zero if k + k′ is strictly larger than

the dimension of the manifold, which in our case is 2) and will be denoted ω ∧ ω′ (read

“omega wedge omega prime”). It will have the following properties.

(a) ω ∧ ω′ is linear in ω and in ω′. That is, if ω = α1ω1 +α2ω2 (where α1,α2 are complex

valued functions on M and ω1, ω2 are forms, then

(
α1ω1 + α2ω2

)
∧ ω′ = α1(ω1 ∧ ω′) + α2(ω1 ∧ ω′)

Similarly, ω ∧
(
α′
1ω

′
1 + α′

2ω
′
2

)
= α′

1(ω ∧ ω′
1) + α′

2(ω ∧ ω′
1).

(b) The product is graded anticommutative. This means that if ω is a k–form and ω′ is a

k′–form then ω ∧ ω′ = (−1)kk
′

ω′ ∧ ω (so that ω ∧ ω′ = ω′ ∧ ω if at least one of k and

k′ is even and ω ∧ ω′ = −ω′ ∧ ω if both k and k′ are odd). In particular ω ∧ ω = 0.

(c) The wedge product is associative. That is (ω ∧ ω′) ∧ ω′′ = ω ∧
(
ω′ ∧ ω′′

)
.

Linearity almost determines the product completely. Pick a patch
{
U , ζ = (x, y)

}
. Then

every 0-form is a function f multiplying the 0–form 1 (whose value at every point of the

manifold is 1). On U , every 1–form, ω
∣
∣
{U,ζ}

= fdx + gdy, is a linear combination of the

two 1–forms dx and dy and every 2–form is a function times the 2–form dx ∧ dy. So, on

the coordinate patch, the wedge product is completely determined by the wedge products

of 1, dx, dy or dx ∧ dy with 1, dx, dy or dx ∧ dy.
Since our manifold has dimension 2, the wedge product (in either order) of dx, dy or

dx∧ dy with dx∧ dy is zero. And of course we define 1∧ω = ω ∧ 1 = ω for all forms ω, so

that for all 0–forms f we have f ∧ω = ω∧f = fω . By property (b), dx∧dx = dy∧dy = 0.

So that leaves only the wedge product of dx with dy, which (surprise!) we define to be

dx ∧ dy and the wedge product of dy with dx, which must be −dx ∧ dy, by property (b).

By way of summary, we have

Definition M.17 If ω is a k–form and ω′ is a k′–form then ω ∧ ω′ is the (k + k′)–form

that is determined by ω ∧ ω′ = (−1)kk
′

ω′ ∧ ω and

(a) if k = k′ = 0 and (ω ∧ ω′)(P ) = ω(P )ω′(P ).

(b) if k = 0 and ω′
∣
∣
U,ζ

= f dx+ g dy then

ω ∧ ω′
∣
∣
U,ζ

= (ω ◦ ζ−1)f dx+ (ω ◦ ζ−1)g dy

(c) if k = 0 and ω′
∣
∣
U,ζ

= f dx ∧ dy then

ω ∧ ω′
∣
∣
U,ζ

= (ω ◦ ζ−1)f dx ∧ dy
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(d) if k = k′ = 1 and ω
∣
∣
U,ζ

= f dx+ g dy and ω′
∣
∣
U,ζ

= f ′ dx+ g dy′ then

ω ∧ ω′
∣
∣
U,ζ

= [fg′ − gf ′] dx ∧ dy
In particular dx ∧ dx = dy ∧ dy = 0 and dx ∧ dy = −dy ∧ dx.

(e) If k + k′ > 2, ω ∧ ω′ = 0.

Problem M.13 Let M be a manifold of dimension n ∈ IN (not necessarily 2) and suppose

that we have defined a wedge product for M that is bilinear, graded anticommutative and

associative (i.e. is satisfies properties (a), (b) and (c) above). Let, for each ≤ j ≤ n, ωj be

a 1–form on M and, for each 1 ≤ i, j ≤ n, fij be a function on M. Prove that
( n∑

j=1

f1jωj

)∧( n∑

j=1

f2jωj

)∧

· · ·
∧( n∑

j=1

fnjωj

)

= det
[
fij

]

1≤i,j≤n
ω1 ∧ ω2 ∧ · · · ∧ ωn

The Differential Operator d

We now define a differential operator which unifies and generalizes gradient, curl and

divergence (see Problem M.16, below). If ω is a k–form, then dω will be a k+1–form (and

will be zero if k is greater than or equal to the dimension of the manifold). It is the unique

such operator that obeys

(a) d is linear. That is, if ω1, ω2 are k–forms and α1, α2 ∈ C, then d
(
α1ω1 + α2ω2

)
=

α1dω1 + α2ω2.

(b) d obeys a graded product rule. That is, if ωk is a k–form and ωℓ is an ℓ–form, then

d
(
ωk ∧ ωℓ

)
=

(
dωk

)
∧ ωℓ + (−1)kωk ∧

(
dωℓ

)
.

(c) If F is a 0–form and {U, ζ = (x1, · · · , xn)} (those are superscripts, not powers) is a

coordinate chart on M, then

dF
∣
∣
{U,ζ}

= ∂
∂x1

(
F ◦ ζ−1

)
(~x) dx1 + · · ·+ ∂

∂xn

(
F ◦ ζ−1

)
(~x) dxn

(d) For any differential form ω, d
(
dω

)
= 0.

For two dimensions, this forces

Definition M.18 Let M be a two dimensional manifold. If {U, ζ} is a coordinate chart

on M and

(a) if F : M → C is a 0–form, then

dF
∣
∣
{U,ζ}

= ∂
∂x

(
F ◦ ζ−1

)
(x, y) dx+ ∂

∂y

(
F ◦ ζ−1

)
(x, y) dy

(b) if ω is a 1–form with ω
∣
∣
{U,ζ}

= f(x, y) dx+ g(x, y) dy, then

dω
∣
∣
{U,ζ}

=
[
∂g
∂x

(x, y)− ∂f
∂y

(x, y)
]
dx ∧ dy

(c) if Ω is a 2–form, then dΩ = 0
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Lemma M.19 The differential operator d maps k–forms to k + 1 forms and obeys

d2 = 0

Proof: In the case k = 0, (writing f = F ◦ ζ−1)

d2F = d
(
∂f
∂x dx+ ∂f

∂y dy
)
= ∂

∂y
∂f
∂xdy ∧ dx+ ∂

∂x
∂f
∂y dx ∧ dy =

[
− ∂2f

∂y∂x + ∂2f
∂x∂y

]
dx ∧ dy = 0

The cases k = 1, 2 are trivial, since d applied to any 2–form is zero.

Problem M.14 Prove that Definition M.18 is independent of the choice of coordinate

chart.

Problem M.15 Prove the graded product rule that if ω is a k–form and ω′ is a k′–form,

then

d(ω ∧ ω′) = (dω) ∧ ω′ + (−1)kω ∧ (dω′)

Problem M.16 (Vector analysis in IR3) Let M be IR3 with atlas
(
U = IR3, ζ(~x) = ~x =

(x, y, z)
)
. Let f : IR3 → IR be any C∞ function on IR3 and a(~x) =

(
a1(~x) , a2(~x) , a3(~x)

)

and b(~x) =
(
b1(~x) , b2(~x) , b3(~x)

)
be any two vector fields (i.e. vector valued functions)

on IR3. We can associate to a(~x) a 1–form ω1
a and a 2–form ω2

a by

ω1
a
= a1(~x) dx+ a2(~x) dy + a3(~x) dz

ω2
a
= a1(~x) dy ∧ dz + a2(~x) dz ∧ dx+ a3(~x) dx ∧ dy

Prove that

(a) ω1
a ∧ ω1

b
= ω2

a×b

(b) ω1
a
∧ ω2

b
= a(~x) · b(~x) dx ∧ dy ∧ dz

(c) df = ω1
~∇f

(d) dω1
a = ω2

~∇×a

(e) dω2
a = ~∇ · a(~x) dx ∧ dy ∧ dz

Observe that

◦ d2f = 0 says that 0 = dω1
~∇f

= ω2
~∇×~∇f

i.e. that ~∇× ~∇f = 0.

◦ d2ω1
a
= 0 says that 0 = dω2

~∇×a
= ~∇ · ~∇× a(~x) dx ∧ dy ∧ dz i.e. that ~∇ · ~∇× a = 0.

The Boundary Operator δ

In preparation for Stokes’ theorem, we now define an operator δ that maps n–chains

to (n− 1)–chains. You should think of δC as the oriented boundary of the chain C. The

definition of δ (still assuming that the manifold M is of dimension two) is
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Definition M.20

(a) For any 0–chain δ
(
n1P1 + · · ·nkPk

)
= 0.

(b) For a path C : [0, 1] → M, δC is the 0–chain C(1)− C(0).

For a 1–chain δ
(
n1C1 + · · ·nkCk

)
= n1δ(C1) + · · ·nkδ(Ck).

(c) For a surface D : Q2 → M, δC is the 1–chain C1 + C2 + C3 where, for 0 ≤ t ≤ 1,

C1(t) = D(t, 0) D

C1

C2(t) = D(1− t, t) D
C2

C3(t) = D(0, 1− t) DC3

For a 2–chain δ
(
n1D1 + · · ·nkDk

)
= n1δ(D1) + · · ·nkδ(Dk).

Lemma M.21 The boundary operator obeys

δ2 = 0

Proof: For a surface D,

δ2D = δ
(
C1 + C2 + C3

)

= [C1(1)− C1(0)] + [C2(1)− C2(0)] + [C3(1)− C3(0)]

= [D(1, 0)−D(0, 0)] + [D(0, 1)−D(1, 0)] + [D(0, 0)−D(0, 1)] = 0

The case n = 2 follows from this. The cases n = 0, 1 are trivial, because δ applied to any

0–chain is zero.

Stokes’ Theorem

Theorem M.22 (Stokes’ Theorem) If ω is a k–form and D is a (k + 1)–chain, then

∫

δD

ω =

∫

D

dω
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Proof: We give the proof for a manifold of dimension two. For k = 0 and D being the

path C, this is the fundamental theorem of calculus.

F (C(1))− F (C(0)) =

∫

C

dF

For k = 1 and D a surface, this is Green’s Theorem.

∫

δD

f dx+ g dy =

∫∫

D

[
∂g
∂x

− ∂f
∂y

]
dx ∧ dy

For k ≥ 2, both sides are zero.

Here are two consequences of Stokes’ Theorem. Firstly, if ω is a compactly supported

1–form,
∫∫

M
dω = 0. To see this, let S be a surface in M that contains the support of

ω. Then
∫∫

M
dω =

∫∫

S
dω =

∫

∂S
ω = 0, since ω vanishes on ∂S. Secondly, if ω is a closed

1–form (meaning that dω = 0) and if C1 and C2 are two 1–chains with C1 − C2 = δD for

some 2–chain D, then
∫

C1
ω =

∫

C2
ω, since

∫

C1

ω −
∫

C2

ω =

∫

C1−C2

ω =

∫

D

dω = 0 DC2

C1

Problem M.17 Let Ω be an open connected, simply connected subset of IR2. Think

of Ω as a two dimensional manifold as in Example M.4. Let F1(x, y), F2(x, y) ∈ C∞(Ω)

obey the compatibility condition that ∂F1

∂ y = ∂F2

∂ x . The goal of this problem is to prove

that there exists a function ϕ(x, y) ∈ C∞(Ω) such that

F1(x, y) =
∂ϕ
∂x

(x, y) and F2(x, y) =
∂ϕ
∂y

(x, y)

This is the analog in two dimensions of the statement that, if Ω is a simply connected

region in IR3 and F(~x) is a vector field in Ω that obeys ~∇ × F(~x) = ~0, then there is a

“potential” ϕ(~x) such that F(~x) = ~∇ϕ(~x).

(a) Define the 1–form ω = F1(x, y) dx+ F2(x, y) dy. Prove that ω is closed.

(b) Let C1(t), C2(t) : [0, 1] → Ω be any two paths in Ω with C1(0) = C2(0) and

C1(1) = C2(1). That is, the two paths have the same initial and final points. Prove

that
∫

C1
ω =

∫

C2
ω.
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(c) Fix any point (x0, y0) ∈ Ω. For each point (x, y) ∈ Ω, select a path Cx,y(t) : [0, 1] → Ω

such that Cx,y(0) = (x0, y0) and Cx,y(1) = (x, y). Define ϕ(x, y) =
∫

Cx,y
ω. Prove that

∂ϕ
∂x (x, y) = F1(x, y) and ∂ϕ

∂y (x, y) = F2(x, y)

(d) Let φ(x, y) and ψ(x, y) be any two functions on Ω that obey

∂φ
∂x (x, y) =

∂ψ
∂x (x, y) = F1(x, y) and ∂φ

∂y (x, y) =
∂ψ
∂y (x, y) = F2(x, y)

Prove that φ(x, y)− ψ(x, y) is a constant independent of x and y.

c© Joel Feldman. 2016. April 4, 2016 Integration on Manifolds 21


