Poisson’s Equation

In these notes we shall find a formula for the solution of Poisson’s equation
Vo = dmp

Here p is a given (smooth) function and ¢ is the unknown function. In electrostatics, p is the
charge density and ¢ is the electric potential. The main step in finding this formula will be
to consider an

arbitrary (smooth) function ¢ and an

arbitrary (smooth) region V in IR® and an

arbitrary point rq in the interior of V'
and to find a formula which expresses ¢(rp) in terms of

V2p(r), with r running over V and

V(r) and ¢(r), with r running only over 0V'.

This formula is
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When we take the limit as V expands to fill all of IR® (assuming that ¢ and V¢ go to zero

sufficiently quickly at co), we will end up with the formula
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that expresses ¢ evaluated at an arbitrary point, ro, of IR® in terms of Vzgp(r), with r running
over IR?, which is exactly what we want.
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We shall exploit several properties of the function m The first two properties are
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and are valid for all r ;A ro. Verifying these properties are simple two line computations. The

other property of that we shall use is the following. Let B. be the sphere of radius ¢
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centered on rg. Then, for any continuous function ¥(r),
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Here is the derivation of (V). Let V. be the part of V' outside of B.. Note that the
boundary 9V. of V. consists of two parts — the boundary 9V of V' and the sphere B, — and

the divergence theorem

that the unit outward normal to 9V, on B, is — h’::igl.
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Subbing in V—— ——0- and applying (B)
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Applying V - (fF) =Vf-F+ fV-F, twice, we see that the integrand of the left hand side is
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since V2 |r_1r0‘ = 0 on V.. So applying lim._,o+ to (M) and applying (L) and (R) gives
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which is exactly equation (V).
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