
Poisson’s Equation

In these notes we shall find a formula for the solution of Poisson’s equation

∇∇∇2ϕ = 4πρ

Here ρ is a given (smooth) function and ϕ is the unknown function. In electrostatics, ρ is the

charge density and ϕ is the electric potential. The main step in finding this formula will be

to consider an

arbitrary (smooth) function ϕ and an

arbitrary (smooth) region V in IR3 and an

arbitrary point r0 in the interior of V

and to find a formula which expresses ϕ(r0) in terms of

∇∇∇2ϕ(r), with r running over V and

∇∇∇ϕ(r) and ϕ(r), with r running only over ∂V .

This formula is

ϕ(r0) = − 1
4π

{
∫∫∫

V

∇∇∇2

ϕ(r)
|r−r0|

d3r−

∫∫

∂V

ϕ(r) r−r0

|r−r0|3
· n̂ dS −

∫∫

∂V

∇∇∇ϕ(r)
|r−r0|

· n̂ dS

}

(V )

When we take the limit as V expands to fill all of IR3 (assuming that ϕ and ∇∇∇ϕ go to zero

sufficiently quickly at ∞), we will end up with the formula

ϕ(r0) = − 1
4π

∫∫∫

V

∇∇∇2

ϕ(r)
|r−r0|

d3r

that expresses ϕ evaluated at an arbitrary point, r0, of IR
3 in terms of∇∇∇2ϕ(r), with r running

over IR3, which is exactly what we want.

Let
r = x ı̂ıı+ y ̂+ z k̂

r0 = x0 ı̂ıı+ y0 ̂+ z0 k̂

We shall exploit several properties of the function 1
|r−r0|

. The first two properties are

∇∇∇ 1
|r−r0|

= − r−r0

|r−r0|3

∇∇∇2 1
|r−r0|

= −∇∇∇ · r−r0

|r−r0|3
= 0

and are valid for all r 6= r0. Verifying these properties are simple two line computations. The

other property of 1
|r−r0|

that we shall use is the following. Let Bε be the sphere of radius ε

centered on r0. Then, for any continuous function ψ(r),

lim
ε→0+

∫∫

Bε

ψ(r)
|r−r0|p

dS = lim
ε→0+

∫∫

Bε

ψ(r0)
|r−r0|p

dS = lim
ε→0+

ψ(r0)
εp

∫∫

Bε

dS = lim
ε→0+

ψ(r0)
εp

4πε2

=

{

4πψ(r0) if p = 2
0 if p < 2

(B)
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r0 Vε

V
Bε

Here is the derivation of (V ). Let Vε be the part of V outside of Bε. Note that the

boundary ∂Vε of Vε consists of two parts — the boundary ∂V of V and the sphere Bε — and

that the unit outward normal to ∂Vε on Bε is −
r−r0

|r−r0|
. By the divergence theorem

∫∫∫

Vε

∇∇∇ ·
(

1
|r−r0|

∇∇∇ϕ− ϕ∇∇∇ 1
|r−r0|

)

dV =

∫∫

∂V

(

1
|r−r0|

∇∇∇ϕ− ϕ∇∇∇ 1
|r−r0|

)

· n̂ dS

+

∫∫

Bε

(

1
|r−r0|

∇∇∇ϕ− ϕ∇∇∇ 1
|r−r0|

)

·
(

− r−r0

|r−r0|

)

dS

(M)

Subbing in ∇∇∇ 1
|r−r0|

= − r−r0

|r−r0|3
and applying (B)

lim
ε→0+

∫∫

Bε

(

1
|r−r0|

∇∇∇ϕ− ϕ∇∇∇ 1
|r−r0|

)

·
(

− r−r0

|r−r0|

)

dS = − lim
ε→0+

∫∫

Bε

(

∇∇∇ϕ · (r− r0) + ϕ
)

1
|r−r0|2

dS

= −4π
[

∇∇∇ϕ · (r− r0) + ϕ
]

r=r0

= −4πϕ(r0) (R)

Applying ∇∇∇·
(

fF
)

=∇∇∇f ·F+ f∇∇∇ ·F, twice, we see that the integrand of the left hand side is

∇∇∇ ·
(

1
|r−r0|

∇∇∇ϕ− ϕ∇∇∇ 1
|r−r0|

)

=∇∇∇ 1
|r−r0|

· ∇∇∇ϕ+ 1
|r−r0|

∇∇∇2ϕ−∇∇∇ϕ · ∇∇∇ 1
|r−r0|

− ϕ∇∇∇2 1
|r−r0|

= 1
|r−r0|

∇∇∇2ϕ (L)

since ∇∇∇2 1
|r−r0|

= 0 on Vε. So applying limε→0+ to (M) and applying (L) and (R) gives

∫∫∫

V

1
|r−r0|

∇∇∇2ϕ dV =

∫∫

∂V

(

1
|r−r0|

∇∇∇ϕ− ϕ∇∇∇ 1
|r−r0|

)

· n̂ dS − 4πϕ(r0)

which is exactly equation (V).
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