Poisson's Equation

In these notes we shall find a formula for the solution of Poisson's equation

$$
\nabla^{2} \varphi=4 \pi \rho
$$

Here ρ is a given (smooth) function and φ is the unknown function. In electrostatics, ρ is the charge density and φ is the electric potential. The main step in finding this formula will be to consider an
arbitrary (smooth) function φ and an
arbitrary (smooth) region V in \mathbb{R}^{3} and an
arbitrary point \mathbf{r}_{0} in the interior of V
and to find a formula which expresses $\varphi\left(\mathbf{r}_{0}\right)$ in terms of
$\nabla^{2} \varphi(\mathbf{r})$, with \mathbf{r} running over V and
$\nabla \varphi(\mathbf{r})$ and $\varphi(\mathbf{r})$, with \mathbf{r} running only over ∂V.
This formula is

$$
\begin{equation*}
\varphi\left(\mathbf{r}_{0}\right)=-\frac{1}{4 \pi}\left\{\iiint_{V} \frac{\nabla^{2} \varphi(\mathbf{r})}{\left|\mathbf{r}-\mathbf{r}_{0}\right|} d^{3} \mathbf{r}-\iint_{\partial V} \varphi(\mathbf{r}) \frac{\mathbf{r}-\mathbf{r}_{0}}{\left|\mathbf{r}-\mathbf{r}_{0}\right|^{3}} \cdot \hat{\mathbf{n}} d S-\iint_{\partial V} \frac{\nabla \varphi(\mathbf{r})}{\left|\mathbf{r}-\mathbf{r}_{0}\right|} \cdot \hat{\mathbf{n}} d S\right\} \tag{V}
\end{equation*}
$$

When we take the limit as V expands to fill all of \mathbb{R}^{3} (assuming that φ and $\nabla \varphi$ go to zero sufficiently quickly at ∞), we will end up with the formula

$$
\varphi\left(\mathbf{r}_{0}\right)=-\frac{1}{4 \pi} \iiint_{V} \frac{\boldsymbol{\nabla}^{2} \varphi(\mathbf{r})}{\left|\mathbf{r}-\mathbf{r}_{0}\right|} d^{3} \mathbf{r}
$$

that expresses φ evaluated at an arbitrary point, \mathbf{r}_{0}, of \mathbb{R}^{3} in terms of $\nabla^{2} \varphi(\mathbf{r})$, with \mathbf{r} running over \mathbb{R}^{3}, which is exactly what we want.

Let

$$
\begin{aligned}
\mathbf{r} & =x \hat{\boldsymbol{\imath}}+y \hat{\boldsymbol{\jmath}}+z \hat{\mathbf{k}} \\
\mathbf{r}_{0} & =x_{0} \hat{\boldsymbol{\imath}}+y_{0} \hat{\boldsymbol{\jmath}}+z_{0} \hat{\mathbf{k}}
\end{aligned}
$$

We shall exploit several properties of the function $\frac{1}{\left|\mathbf{r}-\mathbf{r}_{0}\right|}$. The first two properties are

$$
\begin{aligned}
\nabla \frac{1}{\left|\mathbf{r}-\mathbf{r}_{0}\right|} & =-\frac{\mathbf{r}-\mathbf{r}_{0}}{\left|\mathbf{r}-\mathbf{r}_{0}\right|^{3}} \\
\nabla^{2} \frac{1}{\left|\mathbf{r}-\mathbf{r}_{0}\right|} & =-\nabla \cdot \frac{\mathbf{r}}{\mid \mathbf{r}-\mathbf{r}_{0}} \\
\left|\mathbf{r} \mathbf{r}_{0}\right|^{3} & =0
\end{aligned}
$$

and are valid for all $\mathbf{r} \neq \mathbf{r}_{0}$. Verifying these properties are simple two line computations. The other property of $\frac{1}{\left|\mathbf{r}-\mathbf{r}_{0}\right|}$ that we shall use is the following. Let B_{ε} be the sphere of radius ε centered on \mathbf{r}_{0}. Then, for any continuous function $\psi(\mathbf{r})$,

$$
\begin{align*}
\lim _{\varepsilon \rightarrow 0+} \iint_{B_{\varepsilon}} \frac{\psi(\mathbf{r})}{\left|\mathbf{r}-\mathbf{r}_{0}\right|^{p}} d S & =\lim _{\varepsilon \rightarrow 0+} \iint_{B_{\varepsilon}} \frac{\psi\left(\mathbf{r}_{0}\right)}{\left|\mathbf{r}-\mathbf{r}_{0}\right|^{p}} d S=\lim _{\varepsilon \rightarrow 0+} \frac{\psi\left(\mathbf{r}_{0}\right)}{\varepsilon^{p}} \iint_{B_{\varepsilon}} d S=\lim _{\varepsilon \rightarrow 0+} \frac{\psi\left(\mathbf{r}_{0}\right)}{\varepsilon^{p}} 4 \pi \varepsilon^{2} \\
& = \begin{cases}4 \pi \psi\left(\mathbf{r}_{0}\right) & \text { if } p=2 \\
0 & \text { if } p<2\end{cases} \tag{B}
\end{align*}
$$

Here is the derivation of (V). Let V_{ε} be the part of V outside of B_{ε}. Note that the boundary ∂V_{ε} of V_{ε} consists of two parts - the boundary ∂V of V and the sphere B_{ε} - and that the unit outward normal to ∂V_{ε} on B_{ε} is $-\frac{\mathbf{r}-\mathbf{r}_{0}}{\left|\mathbf{r}-\mathbf{r}_{0}\right|}$. By the divergence theorem

$$
\begin{align*}
\iiint_{V_{\varepsilon}} \boldsymbol{\nabla} \cdot\left(\frac{1}{\left|\mathbf{r}-\mathbf{r}_{0}\right|} \nabla \varphi-\varphi \nabla \frac{1}{\left|\mathbf{r}-\mathbf{r}_{0}\right|}\right) d V= & \iint_{\partial V}\left(\frac{1}{\left|\mathbf{r}-\mathbf{r}_{0}\right|} \nabla \varphi-\varphi \nabla \frac{1}{\left|\mathbf{r}-\mathbf{r}_{0}\right|}\right) \cdot \hat{\mathbf{n}} d S \\
& +\iint_{B_{\varepsilon}}\left(\frac{1}{\left|\mathbf{r}-\mathbf{r}_{0}\right|} \nabla \varphi-\varphi \nabla \frac{1}{\left|\mathbf{r}-\mathbf{r}_{0}\right|}\right) \cdot\left(-\frac{\mathbf{r}-\mathbf{r}_{0}}{\left|\mathbf{r}-\mathbf{r}_{0}\right|}\right) d S \tag{M}
\end{align*}
$$

Subbing in $\nabla \frac{1}{\left|\mathbf{r}-\mathbf{r}_{0}\right|}=-\frac{\mathbf{r}-\mathbf{r}_{0}}{\left|\mathbf{r}-\mathbf{r}_{0}\right|^{3}}$ and applying (B)

$$
\begin{align*}
\lim _{\varepsilon \rightarrow 0+} \iint_{B_{\varepsilon}}\left(\frac{1}{\left|\mathbf{r}-\mathbf{r}_{0}\right|} \nabla \varphi-\varphi \nabla \frac{1}{\left|\mathbf{r}-\mathbf{r}_{0}\right|}\right) \cdot\left(-\frac{\mathbf{r}-\mathbf{r}_{0}}{\left|\mathbf{r}-\mathbf{r}_{0}\right|}\right) d S & =-\lim _{\varepsilon \rightarrow 0+} \iint_{B_{\varepsilon}}\left(\boldsymbol{\nabla} \varphi \cdot\left(\mathbf{r}-\mathbf{r}_{0}\right)+\varphi\right) \frac{1}{\left|\mathbf{r}-\mathbf{r}_{0}\right|^{2}} d S \\
& =-4 \pi\left[\nabla \varphi \cdot\left(\mathbf{r}-\mathbf{r}_{0}\right)+\varphi\right]_{\mathbf{r}=\mathbf{r}_{0}} \\
& =-4 \pi \varphi\left(\mathbf{r}_{0}\right) \tag{R}
\end{align*}
$$

Applying $\nabla \cdot(f \mathbf{F})=\nabla f \cdot \mathbf{F}+f \nabla \cdot \mathbf{F}$, twice, we see that the integrand of the left hand side is

$$
\begin{align*}
\nabla \cdot\left(\frac{1}{\left|\mathbf{r}-\mathbf{r}_{0}\right|} \nabla \varphi-\varphi \nabla \frac{1}{\left|\mathbf{r}-\mathbf{r}_{0}\right|}\right) & =\nabla \frac{1}{\left|\mathbf{r}-\mathbf{r}_{0}\right|} \cdot \nabla \varphi+\frac{1}{\left|\mathbf{r}-\mathbf{r}_{0}\right|} \nabla^{2} \varphi-\nabla \varphi \cdot \nabla \frac{1}{\left|\mathbf{r}-\mathbf{r}_{0}\right|}-\varphi \nabla^{2} \frac{1}{\left|\mathbf{r}-\mathbf{r}_{0}\right|} \\
& =\frac{1}{\left|\mathbf{r}-\mathbf{r}_{0}\right|} \nabla^{2} \varphi \tag{L}
\end{align*}
$$

since $\nabla^{2} \frac{1}{\left|\mathbf{r}-\mathbf{r}_{0}\right|}=0$ on V_{ε}. So applying $\lim _{\varepsilon \rightarrow 0+}$ to (M) and applying (L) and (R) gives

$$
\iiint_{V} \frac{1}{\left|\mathbf{r}-\mathbf{r}_{0}\right|} \nabla^{2} \varphi d V=\iint_{\partial V}\left(\frac{1}{\left|\mathbf{r}-\mathbf{r}_{0}\right|} \nabla \varphi-\varphi \nabla \frac{1}{\left|\mathbf{r}-\mathbf{r}_{0}\right|}\right) \cdot \hat{\mathbf{n}} d S-4 \pi \varphi\left(\mathbf{r}_{0}\right)
$$

which is exactly equation (V).

