A Summary of Rigid Body Formulae

By definition, a rigid body is a family of N particles, with the mass of particle number i denoted m_{i} and with the position of particle number i at time t denoted $\vec{x}^{(i)}(t)$, together with sufficiently many constraints of the form $\left|\vec{x}^{(i)}(t)-\vec{x}^{(j)}(t)\right|=\ell_{i, j}$, constant, that the positions of all particles at time t are uniquely determined by
(i) the position of one point $\vec{c}(t)$ fixed with respect to the body and
(ii) three mutually perpendicular unit vectors $\hat{\imath}_{1}(t), \hat{\imath}_{2}(t), \hat{\imath}_{3}(t)$, forming a right handed triple, that are also fixed with respect to the body.
That is, for each $1 \leq i \leq N$, particle number i has three coordinates $\vec{X}^{(i)}=\left(X_{1}^{(i)}, X_{2}^{(i)}, X_{3}^{(i)}\right)$, which are fixed for all time, such that

$$
\begin{aligned}
& \vec{x}^{(i)}(t)=\vec{c}(t)+X_{1}^{(i)} \hat{\imath}_{1}(t)+X_{2}^{(i)} \hat{\imath}_{2}(t)+X_{3}^{(i)} \hat{\imath}_{3}(t)=\vec{c}(t)+R(t) \vec{X}^{(i)} \\
& \quad \text { where } R(t)=\left[\hat{\imath}_{1}(t) \hat{\imath}_{2}(t) \hat{\imath}_{3}(t)\right] \in S O(3)
\end{aligned}
$$

One refers to $\vec{x}^{(i)}$ as the position of particle number i expressed in laboratory coordinates, and $\vec{X}^{(i)}$ as the position of particle number i expressed in body coordinates. One often chooses $\vec{c}(t)$ to be the centre of mass. That is,

$$
\vec{c}(t)=\frac{1}{\mu} \sum_{i=1}^{N} m_{i} \vec{x}^{(i)}(t) \quad \text { where } \mu=\text { total mass }=\sum_{i=1}^{N} m_{i}
$$

It is also quite common to impose the additional constraint that $\vec{c}(t)=0$ for all time. The velocity of particle number i is

$$
\begin{aligned}
\dot{\vec{x}}^{(i)}(t) & =\dot{\vec{c}}(t)+\dot{R}(t) \vec{X}^{(i)} \\
& =\dot{\vec{c}}(t)+\dot{R}(t) R(t)^{-1}\left(\vec{x}^{(i)}(t)-\vec{c}(t)\right) \\
& =\dot{\vec{c}}(t)+\vec{\omega}(t) \times\left(\vec{x}^{(i)}(t)-\vec{c}(t)\right) \\
& =\dot{\vec{c}}(t)+(R(t) \vec{\Omega}(t)) \times\left(\vec{x}^{(i)}(t)-\vec{c}(t)\right) \\
& =\dot{\vec{c}}(t)+R(t)\left(\vec{\Omega}(t) \times \vec{X}^{(i)}\right)
\end{aligned}
$$

(velocity)
where $\vec{\omega}(t)$ is the angular velocity of the body expressed in laboratory coordinates, and $\Omega(t)$ is the angular velocity of the body expressed in body coordinates. Precisely,

$$
\left[\begin{array}{ccc}
0 & -\omega_{3}(t) & \omega_{2}(t) \\
\omega_{3}(t) & 0 & -\omega_{1}(t) \\
-\omega_{2}(t) & \omega_{1}(t) & 0
\end{array}\right]=\dot{R}(t) R(t)^{-1} \quad \vec{\omega}(t)=\Omega_{1}(t) \hat{\imath}_{1}(t)+\Omega_{2}(t) \hat{\imath}_{2}(t)+\Omega_{3}(t) \hat{\imath}_{3}(t)=R(t) \vec{\Omega}(t)
$$

(angular velocity)
Assuming that $\vec{c}(t)$ is the centre of mass of the body, the kinetic energy of the body is

$$
K E=\frac{1}{2} \mu \dot{\vec{c}}(t)^{2}+\frac{1}{2} \vec{\Omega}(t) \cdot \mathcal{I} \vec{\Omega}(t)
$$

(kinetic energy)
where the matrix \mathcal{I}, which is time independent and called the inertia tensor, is determined by

$$
\vec{u} \cdot \mathcal{I} \vec{v}=\sum_{i=1}^{N} m_{i}\left[\vec{u} \times \vec{X}^{(i)}\right] \cdot\left[\vec{v} \times \vec{X}^{(i)}\right]
$$

November 25, 2007

In particular, for each $1 \leq j, k \leq 3$, the j, k matrix element of \mathcal{I} is

$$
\mathcal{I}_{j, k}=\sum_{i=1}^{N} m_{i}\left[\vec{X}^{(i)} \cdot \vec{X}^{(i)} \delta_{j, k}-X_{j}^{(i)} X_{k}^{(i)}\right]
$$

If $\vec{c}(t) \equiv 0$, the angular momentum

$$
\begin{aligned}
\vec{m} & =\sum_{i=1}^{N} m_{i} \vec{x}^{(i)}(t) \times \dot{\vec{x}}^{(i)}(t) \\
& =R(t) \mathcal{I} \vec{\Omega}(t) \\
& =R(t) \vec{M}(t)
\end{aligned}
$$

where $\vec{M}(t)=\mathcal{I} \vec{\Omega}(t)$ is the angular momentum in body coordinates. For free motion, angular momentum is conserved so that

$$
0=\frac{d}{d t} \vec{m}=R(t) \dot{\vec{M}}(t)+\dot{R}(t) \vec{M}(t)=R(t) \dot{\vec{M}}(t)+\vec{\omega}(t) \times(R(t) \vec{M}(t))=R(t)[\dot{\vec{M}}(t)+\vec{\Omega}(t) \times \vec{M}(t)]
$$

Thus

$$
\dot{\vec{M}}(t)=\vec{M}(t) \times \vec{\Omega}(t)=\vec{M}(t) \times \mathcal{I}^{-1} \vec{M}(t)
$$

The matrix \mathcal{I} is symmetric. So we may choose a coordinate system in which it is diagonal, with its eigenvalues, I_{1}, I_{2}, I_{3}, on the diagonal. Then

$$
\dot{M}_{1}(t)=\frac{I_{2}-I_{3}}{I_{2} I_{3}} M_{2}(t) M_{3}(t) \quad \dot{M}_{2}(t)=\frac{I_{3}-I_{1}}{I_{1} I_{3}} M_{1}(t) M_{3}(t) \quad \dot{M}_{3}(t)=\frac{I_{1}-I_{2}}{I_{1} I_{2}} M_{1}(t) M_{2}(t)
$$

