## Stokes’ Theorem

## The statement

Let

- $S$ be a smooth oriented surface (i.e. a unit normal $\hat{\mathbf{n}}$ has been chosen at each point of $S$ and this choice depends continuously on the point)
- the boundary, $\partial S$, of the surface $S$ also be smooth and be oriented consistently with $\hat{\mathbf{n}}$ in the sense that
- if you stand on $S$ with the vector from your feet to your head having direction $\hat{\mathbf{n}}$ and - if you walk along $\partial S$ in the direction of the arrow on $\partial S$,
- then $S$ is on your left hand side.
- $\mathbf{F}$ be a vector field that has continuous first partial derivatives at every point of $S$

Then

$$
\oint_{\partial S} \mathbf{F} \cdot d \mathbf{r}=\iint_{S} \nabla \times \mathbf{F} \cdot \hat{\mathbf{n}} d S
$$

The proof Both integrals involve $F_{1}$ terms and $F_{2}$ terms and $F_{3}$ terms. We shall show that the $F_{1}$ terms in the two integrals agree. In other words, we shall assume that $\mathbf{F}=F_{1} \hat{\imath}$. The proofs that the $F_{2}$ and $F_{3}$ terms also agree are similar.

Pick a parametrization of $S$ with

$$
S=\left\{\mathbf{r}(u, v)=(x(u, v), y(u, v), z(u, v)) \mid(u, v) \text { in } R \subset \mathbb{R}^{2}\right\}
$$

and with $\mathbf{r}(u, v)$ orientation preserving in the sense that $\hat{\mathbf{n}} d S=+\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v} d u d v$. Pick a parametrization of the curve, $\partial R$, bounding $R$ as $(u(t), v(t)), a \leq t \leq b$, in such a way that the velocity vector $\left(u^{\prime}(t), v^{\prime}(t)\right)$ is never zero, and when you walk along $\partial R$ in the direction of increasing $t$, then $R$ is on your left. Then the curve $\partial S$ bounding $S$ can be parametrized as $\mathbf{R}(t)=\mathbf{r}(u(t), v(t)), a \leq t \leq b$.


The orientation of $\mathbf{R}(t)$ I claim that the direction of increasing $t$ for the parametrization $\mathbf{R}(t)$ is the direction of the arrow on $\partial S$. For simplicity, suppose that $\partial R$ is connected.

By continuity, it suffices to check the orientation at a single point. Find a point ( $u_{0}, v_{0}$ ) on $\partial R$ where the forward pointing tangent vector is a positive multiple of $\hat{\boldsymbol{\imath}}$. The arrow on $\partial R$ in the figure below is at such a point. Suppose that $t=t_{0}$ at this point - in other words, suppose that $\left(u_{0}, v_{0}\right)=\left(u\left(t_{0}\right), v\left(t_{0}\right)\right)$. Because the forward pointing tangent vector to $\partial R$ at $\left(u_{0}, v_{0}\right)$ is a positive multiple of $\hat{\boldsymbol{\imath}}$, we have $u^{\prime}\left(t_{0}\right)>0$ and $v^{\prime}\left(t_{0}\right)=0$. The tangent vector to $\partial S$ at $\mathbf{R}\left(t_{0}\right)=\mathbf{r}\left(u_{0}, v_{0}\right)$, pointing in the direction of increasing $t$, is $\mathbf{R}^{\prime}\left(t_{0}\right)=\left.\frac{d}{d t} \mathbf{r}(u(t), v(t))\right|_{t=t_{0}}=u^{\prime}\left(t_{0}\right) \frac{\partial \mathbf{r}}{\partial u}\left(u_{0}, v_{0}\right)+v^{\prime}\left(t_{0}\right) \frac{\partial \mathbf{r}}{\partial v}\left(u_{0}, v_{0}\right)=u^{\prime}\left(t_{0}\right) \frac{\partial \mathbf{r}}{\partial u}\left(u_{0}, v_{0}\right)$ and so is a positive multiple of $\frac{\partial \mathbf{r}}{\partial u}\left(u_{0}, v_{0}\right)$.

If we now walk along a path in the $u v$-plane which starts at $\left(u_{0}, v_{0}\right)$, holds $u$ fixed at $u_{0}$ and increases $v$, we move into the interior of $R$ starting at ( $u_{0}, v_{0}$ ). Correspondingly, if we walk along a path, $\mathbf{r}\left(u_{0}, v\right)$, in $\mathbb{R}^{3}$ with $v$ starting at $v_{0}$ and increasing, we move into the interior of $S$. The forward tangent to this new path, $\frac{\partial \mathbf{r}}{\partial v}\left(u_{0}, v_{0}\right)$, points from $\mathbf{r}\left(u_{0}, v_{0}\right)$ into the interior of $S$.


Now imagine that you are walking along $\partial S$ in the direction of increasing $t$. At time $t_{0}$ you are at $\mathbf{R}\left(t_{0}\right)$. You point your right arm straight ahead of you. So it is pointing in the direction $\frac{\partial \mathbf{r}}{\partial u}\left(u_{0}, v_{0}\right)$. You point your left arm straight out sideways into the interior of $S$. It is pointing in the direction $\frac{\partial \mathbf{r}}{\partial v}\left(u_{0}, v_{0}\right)$. If the direction of increasing $t$ is the same as the forward direction of the orientation of $\partial S$, then the vector from our feet to our head, which is $\frac{\partial \mathbf{r}}{\partial u}\left(u_{0}, v_{0}\right) \times \frac{\partial \mathbf{r}}{\partial v}\left(u_{0}, v_{0}\right)$, should be pointing in the same direction as $\hat{\mathbf{n}}$. Since $\hat{\mathbf{n}} d S=+\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v} d u d v$, it is.

The surface integral Since $F=F_{1} \hat{\imath}$ and $\hat{\mathbf{n}} d S=\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v} d u d v$,

$$
\begin{aligned}
& \iint_{S} \nabla \times \mathbf{F} \cdot \hat{\mathbf{n}} d S=\iint_{R}\left(0, \frac{\partial F_{1}}{\partial z},-\frac{\partial F_{1}}{\partial y}\right) \cdot \frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v} d u d v \\
& \quad=\iint_{R}\left\{\frac{\partial F_{1}}{\partial z}\left(\frac{\partial z}{\partial u} \frac{\partial x}{\partial v}-\frac{\partial x}{\partial u} \frac{\partial z}{\partial v}\right)-\frac{\partial F_{1}}{\partial y}\left(\frac{\partial x}{\partial u} \frac{\partial y}{\partial v}-\frac{\partial y}{\partial u} \frac{\partial x}{\partial v}\right)\right\} d u d v
\end{aligned}
$$

## The line integral

$$
\begin{aligned}
\oint_{\partial S} \mathbf{F} \cdot d \mathbf{r}=\int_{a}^{b} \mathbf{F}(\mathbf{r}(u(t), v(t))) \cdot \frac{d}{d t} \mathbf{r}(u(t), v(t)) d t \\
\quad=\int_{a}^{b} \mathbf{F}(\mathbf{r}(u(t), v(t))) \cdot\left[\frac{\partial \mathbf{r}}{\partial u}(u(t), v(t)) \frac{d u}{d t}(t)+\frac{\partial \mathbf{r}}{\partial v} \frac{d v}{d t}\right] d t
\end{aligned}
$$

This agrees exactly with the line integral

$$
\oint_{\partial R} M(u, v) d u+N(u, v) d v=\int_{a}^{b}\left[M(u(t), v(t)) \frac{d u}{d t}(t)+N(u(t), v(t)) \frac{d v}{d t}(t)\right] d t
$$

around $\partial R$, if we choose

$$
\begin{aligned}
M(u, v) & =\mathbf{F}(\mathbf{r}(u, v)) \cdot \frac{\partial \mathbf{r}}{\partial u}(u, v) \\
& =F_{1}(x(u, v), y(u, v), z(u, v)) \frac{\partial x}{\partial u}(u, v) \\
N(u, v) & =\mathbf{F}(\mathbf{r}(u, v)) \cdot \frac{\partial \mathbf{r}}{\partial v}(u, v) \\
& =F_{1}(x(u, v), y(u, v), z(u, v)) \frac{\partial x}{\partial v}(u, v)
\end{aligned}
$$

By Green's Theorem, we have

$$
\begin{aligned}
& \oint_{\partial S} \mathbf{F} \cdot d \mathbf{r}=\oint_{\partial R} M(u, v) d u+N(u, v) d v \\
& =\iint_{R}\left\{\frac{\partial N}{\partial u}-\frac{\partial M}{\partial v}\right\} d u d v \\
& =\iint_{R}\left\{\left(\frac{\partial F_{1}}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial F_{1}}{\partial y} \frac{\partial y}{\partial u}+\frac{\partial F_{1}}{\partial z} \frac{\partial z}{\partial u}\right) \frac{\partial x}{\partial v}+F_{1} \frac{\partial^{2} x}{\partial u \partial v}\right. \\
& \left.\quad-\left(\frac{\partial F_{1}}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial F_{1}}{\partial y} \frac{\partial y}{\partial v}+\frac{\partial F_{1}}{\partial z} \frac{\partial z}{\partial v}\right) \frac{\partial x}{\partial u}-F_{1} \frac{\partial^{2} x}{\partial v \partial u}\right\} d u d v \\
& =\iint_{R}\left\{\left(\frac{\partial F_{1}}{\partial y} \frac{\partial y}{\partial u}+\frac{\partial F_{1}}{\partial z} \frac{\partial z}{\partial u}\right) \frac{\partial x}{\partial v}-\left(\frac{\partial F_{1}}{\partial y} \frac{\partial y}{\partial v}+\frac{\partial F_{1}}{\partial z} \frac{\partial z}{\partial v}\right) \frac{\partial x}{\partial u}\right\} d u d v \\
& =\iint_{S} \nabla \times \mathbf{F} \cdot \hat{\mathbf{n}} d S
\end{aligned}
$$

