
Stokes’ Theorem

The statement

Let

◦ S be a smooth oriented surface (i.e. a unit normal n̂ has been chosen at each point of S

and this choice depends continuously on the point)

◦ the boundary, ∂S, of the surface S also be smooth and be oriented consistently with n̂

in the sense that

◦ if you stand on S with the vector from your feet to your head having direction n̂ and

◦ if you walk along ∂S in the direction of the arrow on ∂S,

◦ then S is on your left hand side.

◦ F be a vector field that has continuous first partial derivatives at every point of S

Then
∮

∂S

F · dr =

∫∫

S

∇∇∇× F · n̂ dS

The proof Both integrals involve F1 terms and F2 terms and F3 terms. We shall show

that the F1 terms in the two integrals agree. In other words, we shall assume that F = F1ı̂ıı.

The proofs that the F2 and F3 terms also agree are similar.

Pick a parametrization of S with

S =
{

r(u, v) =
(

x(u, v), y(u, v), z(u, v)
)
∣

∣ (u, v) in R ⊂ IR2
}

and with r(u, v) orientation preserving in the sense that n̂ dS = + ∂r
∂u

× ∂r
∂v

du dv. Pick a

parametrization of the curve, ∂R, bounding R as
(

u(t), v(t)
)

, a ≤ t ≤ b, in such a way

that the velocity vector
(

u′(t), v′(t)
)

is never zero, and when you walk along ∂R in the

direction of increasing t, then R is on your left. Then the curve ∂S bounding S can be

parametrized as R(t) = r
(

u(t), v(t)
)

, a ≤ t ≤ b.

∂R

R (u, v)

u

v

z

y

x

∂S
S

r(u, v)

The orientation of R(t) I claim that the direction of increasing t for the parametrization

R(t) is the direction of the arrow on ∂S. For simplicity, suppose that ∂R is connected.
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By continuity, it suffices to check the orientation at a single point. Find a point (u0, v0)

on ∂R where the forward pointing tangent vector is a positive multiple of ı̂ıı. The arrow

on ∂R in the figure below is at such a point. Suppose that t = t0 at this point — in

other words, suppose that (u0, v0) =
(

u(t0), v(t0)
)

. Because the forward pointing tangent

vector to ∂R at (u0, v0) is a positive multiple of ı̂ıı, we have u′(t0) > 0 and v′(t0) = 0.

The tangent vector to ∂S at R(t0) = r
(

u0, v0
)

, pointing in the direction of increasing t,

is R′(t0) =
d
dt
r
(

u(t), v(t)
)
∣

∣

t=t0
= u′(t0)

∂r
∂u

(u0, v0)+ v′(t0)
∂r
∂v

(u0, v0) = u′(t0)
∂r
∂u

(u0, v0) and

so is a positive multiple of ∂r
∂u

(u0, v0).

If we now walk along a path in the uv–plane which starts at (u0, v0), holds u fixed at

u0 and increases v, we move into the interior of R starting at (u0, v0). Correspondingly, if

we walk along a path, r(u0, v), in IR3 with v starting at v0 and increasing, we move into

the interior of S. The forward tangent to this new path, ∂r
∂v

(u0, v0), points from r(u0, v0)

into the interior of S.

(u0, v0)
(u′(t0), 0)∂R

R

u

v r(u, v)
z

y

x

R(t0) = r(u0, v0)

∂r
∂u

∂r
∂u

× ∂r
∂v

∂r
∂v

∂S

Now imagine that you are walking along ∂S in the direction of increasing t. At time

t0 you are at R(t0). You point your right arm straight ahead of you. So it is pointing in

the direction ∂r
∂u

(u0, v0). You point your left arm straight out sideways into the interior

of S. It is pointing in the direction ∂r
∂v

(u0, v0). If the direction of increasing t is the same

as the forward direction of the orientation of ∂S, then the vector from our feet to our

head, which is ∂r
∂u

(u0, v0)×
∂r
∂v

(u0, v0), should be pointing in the same direction as n̂. Since

n̂ dS = + ∂r
∂u

× ∂r
∂v

du dv, it is.

The surface integral Since F = F1ı̂ıı and n̂ dS = ∂r
∂u

× ∂r
∂v

du dv,

∫∫

S

∇∇∇× F · n̂ dS =

∫∫

R

(

0, ∂F1

∂z
,−∂F1

∂y

)

· ∂r
∂u

× ∂r
∂v

du dv

=

∫∫

R

{

∂F1

∂z

(

∂z
∂u

∂x
∂v

− ∂x
∂u

∂z
∂v

)

− ∂F1

∂y

(

∂x
∂u

∂y
∂v

− ∂y
∂u

∂x
∂v

)

}

du dv
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The line integral

∮

∂S

F · dr =

∫ b

a

F
(

r
(

u(t), v(t)
)

)

· d
dt
r
(

u(t), v(t)
)

dt

=

∫ b

a

F
(

r
(

u(t), v(t)
)

)

·
[

∂r
∂u

(

u(t), v(t)
)

du
dt
(t) + ∂r

∂v
dv
dt

]

dt

This agrees exactly with the line integral

∮

∂R

M(u, v) du+N(u, v) dv =

∫ b

a

[

M
(

u(t), v(t)
)

du
dt
(t) +N

(

u(t), v(t)) dv
dt
(t)

]

dt

around ∂R, if we choose

M(u, v) = F
(

r(u, v)
)

· ∂r
∂u

(u, v)

= F1

(

x(u, v), y(u, v), z(u, v)
)

∂x
∂u

(u, v)

N(u, v) = F
(

r(u, v)
)

· ∂r
∂v

(u, v)

= F1

(

x(u, v), y(u, v), z(u, v)
)

∂x
∂v

(u, v)

By Green’s Theorem, we have

∮

∂S

F · dr =

∮

∂R

M(u, v) du+N(u, v) dv

=

∫∫

R

{

∂N
∂u

− ∂M
∂v

}

dudv

=

∫∫

R

{

(

∂F1

∂x
∂x
∂u

+ ∂F1

∂y
∂y
∂u

+ ∂F1

∂z
∂z
∂u

)

∂x
∂v

+ F1
∂2x
∂u∂v

−
(

∂F1

∂x
∂x
∂v

+ ∂F1

∂y
∂y
∂v

+ ∂F1

∂z
∂z
∂v

)

∂x
∂u

− F1
∂2x
∂v∂u

}

dudv

=

∫∫

R

{

(

∂F1

∂y
∂y
∂u

+ ∂F1

∂z
∂z
∂u

)

∂x
∂v

−
(

∂F1

∂y
∂y
∂v

+ ∂F1

∂z
∂z
∂v

)

∂x
∂u

}

du dv

=

∫∫

S

∇∇∇×F · n̂ dS
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