Stokes' Theorem

The statement

Let

- S be a smooth oriented surface (i.e. a unit normal $\hat{\mathbf{n}}$ has been chosen at each point of S and this choice depends continuously on the point)
- the boundary, ∂S , of the surface S also be smooth and be oriented consistently with $\hat{\mathbf{n}}$ in the sense that
 - \circ if you stand on S with the vector from your feet to your head having direction $\hat{\mathbf{n}}$ and
 - \circ if you walk along ∂S in the direction of the arrow on ∂S ,
 - $\circ \,$ then S is on your left hand side.

 $\circ~{\bf F}$ be a vector field that has continuous first partial derivatives at every point of S Then

$$\oint_{\partial S} \mathbf{F} \cdot d\mathbf{r} = \iint_{S} \mathbf{\nabla} \times \mathbf{F} \cdot \hat{\mathbf{n}} \, dS$$

The proof Both integrals involve F_1 terms and F_2 terms and F_3 terms. We shall show that the F_1 terms in the two integrals agree. In other words, we shall assume that $\mathbf{F} = F_1 \hat{\boldsymbol{i}}$. The proofs that the F_2 and F_3 terms also agree are similar.

Pick a parametrization of S with

$$S = \left\{ \mathbf{r}(u, v) = \left(x(u, v), y(u, v), z(u, v) \right) \mid (u, v) \text{ in } R \subset \mathbb{R}^2 \right\}$$

and with $\mathbf{r}(u, v)$ orientation preserving in the sense that $\hat{\mathbf{n}} dS = +\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v} du dv$. Pick a parametrization of the curve, ∂R , bounding R as (u(t), v(t)), $a \leq t \leq b$, in such a way that the velocity vector (u'(t), v'(t)) is never zero, and when you walk along ∂R in the direction of increasing t, then R is on your left. Then the curve ∂S bounding S can be parametrized as $\mathbf{R}(t) = \mathbf{r}(u(t), v(t))$, $a \leq t \leq b$.

The orientation of R(t) I claim that the direction of increasing t for the parametrization $\mathbf{R}(t)$ is the direction of the arrow on ∂S . For simplicity, suppose that ∂R is connected.

By continuity, it suffices to check the orientation at a single point. Find a point (u_0, v_0) on ∂R where the forward pointing tangent vector is a positive multiple of $\hat{\boldsymbol{i}}$. The arrow on ∂R in the figure below is at such a point. Suppose that $t = t_0$ at this point — in other words, suppose that $(u_0, v_0) = (u(t_0), v(t_0))$. Because the forward pointing tangent vector to ∂R at (u_0, v_0) is a positive multiple of $\hat{\boldsymbol{i}}$, we have $u'(t_0) > 0$ and $v'(t_0) = 0$. The tangent vector to ∂S at $\mathbf{R}(t_0) = \mathbf{r}(u_0, v_0)$, pointing in the direction of increasing t, is $\mathbf{R}'(t_0) = \frac{d}{dt} \mathbf{r}(u(t), v(t)) \Big|_{t=t_0} = u'(t_0) \frac{\partial \mathbf{r}}{\partial u}(u_0, v_0) + v'(t_0) \frac{\partial \mathbf{r}}{\partial v}(u_0, v_0) = u'(t_0) \frac{\partial \mathbf{r}}{\partial u}(u_0, v_0)$ and so is a positive multiple of $\frac{\partial \mathbf{r}}{\partial u}(u_0, v_0)$.

If we now walk along a path in the uv-plane which starts at (u_0, v_0) , holds u fixed at u_0 and increases v, we move into the interior of R starting at (u_0, v_0) . Correspondingly, if we walk along a path, $\mathbf{r}(u_0, v)$, in \mathbb{R}^3 with v starting at v_0 and increasing, we move into the interior of S. The forward tangent to this new path, $\frac{\partial \mathbf{r}}{\partial v}(u_0, v_0)$, points from $\mathbf{r}(u_0, v_0)$ into the interior of S.

Now imagine that you are walking along ∂S in the direction of increasing t. At time t_0 you are at $\mathbf{R}(t_0)$. You point your right arm straight ahead of you. So it is pointing in the direction $\frac{\partial \mathbf{r}}{\partial u}(u_0, v_0)$. You point your left arm straight out sideways into the interior of S. It is pointing in the direction $\frac{\partial \mathbf{r}}{\partial v}(u_0, v_0)$. If the direction of increasing t is the same as the forward direction of the orientation of ∂S , then the vector from our feet to our head, which is $\frac{\partial \mathbf{r}}{\partial u}(u_0, v_0) \times \frac{\partial \mathbf{r}}{\partial v}(u_0, v_0)$, should be pointing in the same direction as $\hat{\mathbf{n}}$. Since $\hat{\mathbf{n}} dS = +\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v} du dv$, it is.

The surface integral Since $F = F_1 \hat{i}$ and $\hat{n} dS = \frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v} du dv$,

$$\iint_{S} \nabla \times \mathbf{F} \cdot \hat{\mathbf{n}} \, dS = \iint_{R} \left(0, \frac{\partial F_{1}}{\partial z}, -\frac{\partial F_{1}}{\partial y} \right) \cdot \frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v} \, du \, dv$$
$$= \iint_{R} \left\{ \frac{\partial F_{1}}{\partial z} \left(\frac{\partial z}{\partial u} \frac{\partial x}{\partial v} - \frac{\partial x}{\partial u} \frac{\partial z}{\partial v} \right) - \frac{\partial F_{1}}{\partial y} \left(\frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial y}{\partial u} \frac{\partial x}{\partial v} \right) \right\} \, du \, dv$$

March 18, 2013

The line integral

$$\oint_{\partial S} \mathbf{F} \cdot d\mathbf{r} = \int_{a}^{b} \mathbf{F} \Big(\mathbf{r} \big(u(t), v(t) \big) \Big) \cdot \frac{d}{dt} \mathbf{r} \big(u(t), v(t) \big) dt$$
$$= \int_{a}^{b} \mathbf{F} \Big(\mathbf{r} \big(u(t), v(t) \big) \Big) \cdot \Big[\frac{\partial \mathbf{r}}{\partial u} \big(u(t), v(t) \big) \frac{du}{dt} (t) + \frac{\partial \mathbf{r}}{\partial v} \frac{dv}{dt} \Big] dt$$

This agrees exactly with the line integral

$$\oint_{\partial R} M(u,v) \ du + N(u,v) \ dv = \int_a^b \left[M\big(u(t),v(t)\big) \ \frac{du}{dt}(t) + N\big(u(t),v(t)\big) \ \frac{dv}{dt}(t) \right] \ dt$$

around ∂R , if we choose

$$M(u,v) = \mathbf{F}(\mathbf{r}(u,v)) \cdot \frac{\partial \mathbf{r}}{\partial u}(u,v)$$

= $F_1(x(u,v), y(u,v), z(u,v)) \frac{\partial x}{\partial u}(u,v)$
 $N(u,v) = \mathbf{F}(\mathbf{r}(u,v)) \cdot \frac{\partial \mathbf{r}}{\partial v}(u,v)$
= $F_1(x(u,v), y(u,v), z(u,v)) \frac{\partial x}{\partial v}(u,v)$

By Green's Theorem, we have

$$\begin{split} \oint_{\partial S} \mathbf{F} \cdot d\mathbf{r} &= \oint_{\partial R} M(u, v) \ du + N(u, v) \ dv \\ &= \iint_{R} \left\{ \frac{\partial N}{\partial u} - \frac{\partial M}{\partial v} \right\} \ du dv \\ &= \iint_{R} \left\{ \left(\frac{\partial F_{1}}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial F_{1}}{\partial y} \frac{\partial y}{\partial u} + \frac{\partial F_{1}}{\partial z} \frac{\partial z}{\partial u} \right) \frac{\partial x}{\partial v} + F_{1} \frac{\partial^{2} x}{\partial u \partial v} \\ &- \left(\frac{\partial F_{1}}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial F_{1}}{\partial y} \frac{\partial y}{\partial v} + \frac{\partial F_{1}}{\partial z} \frac{\partial z}{\partial v} \right) \frac{\partial x}{\partial u} - F_{1} \frac{\partial^{2} x}{\partial v \partial u} \right\} \ du dv \\ &= \iint_{R} \left\{ \left(\frac{\partial F_{1}}{\partial y} \frac{\partial y}{\partial u} + \frac{\partial F_{1}}{\partial z} \frac{\partial z}{\partial u} \right) \frac{\partial x}{\partial v} - \left(\frac{\partial F_{1}}{\partial y} \frac{\partial y}{\partial v} + \frac{\partial F_{1}}{\partial z} \frac{\partial z}{\partial v} \right) \frac{\partial x}{\partial v} \right\} \ du \ dv \\ &= \iint_{S} \mathbf{\nabla} \times \mathbf{F} \cdot \hat{\mathbf{n}} \ dS \end{split}$$