
Example of the Use of Stokes’ Theorem

In these notes we compute, in three different ways,
∮

C
~F · d~r where ~F = (z − y) ı̂ıı− (x+ z) ̂− (x+ y) k̂

and C is the curve x2 + y2 + z2 = 4, z = y oriented counterclockwise when viewed from above.

Direct Computation

In this first computation, we parametrize the curve C and compute
∮

C
~F · d~r directly. The plane z = y

passes through the origin, which is the centre of the sphere x2 + y2 + z2 = 4. So C is a circle which, like the

sphere, has radius 2 and centre (0, 0, 0). We use a parametrization of the form

~r(t) = ~c+ ρ cos t ı̂ıı′ + ρ sin t ̂′ 0 ≤ t ≤ 2π

where ~c = (0, 0, 0) is the centre of C, ρ = 2 is the radius of C and ı̂ıı′ and ̂′ are two vectors that (a) are unit

vectors, (b) are parallel to the plane z = y and (c) are mutually perpendicular. The point (2, 0, 0) satisfies

both x2 + y2 + z2 = 4 and z = y and so is on C. We may choose ı̂ıı′ to be the unit vector in the direction

from the centre (0, 0, 0) of the circle towards (2, 0, 0). Namely ı̂ıı′ = (1, 0, 0). Since the plane of the circle is

z − y = 0, the vector ~∇(z − y) = (0,−1, 1) is perpendicular to the plane of C. So k̂′ = 1√
2
(0,−1, 1) is a

unit vector normal to z = y. Then ̂′ = k̂′ × ı̂ıı′ = 1√
2
(0,−1, 1)× (1, 0, 0) = 1√

2
(0, 1, 1) is a unit vector that

is perpendicular to ı̂ıı′. Since ̂′ is also perpendicular to k̂′, it is parallel to z = y. Subbing in ~c = (0, 0, 0),

ρ = 2, ı̂ıı′ = (1, 0, 0) and ̂′ = 1√
2
(0, 1, 1) gives

z

y

x

ı̂ıı′

̂′
k̂′ ~r(t) = 2 cos t (1, 0, 0) + 2 sin t 1√

2
(0, 1, 1) = 2

(

cos t, sin t√
2
, sin t√

2

)

0 ≤ t ≤ 2π

To check that this parametrization is correct, note that x = 2 cos t, y =
√
2 sin t, z =

√
2 sin t satisfies both

x2 + y2 + z2 = 4 and z = y. At t = 0, ~r(0) = (2, 0, 0). As t increases, z(t) =
√
2 increases and ~r(t) moves

upwards towards ~r
(

π
2

)

= (0,
√
2,
√
2). This is the desired counterclockwise direction. Now that we have a

parametrization, we can set up the integral.

~r(t) =
(

2 cos t,
√
2 sin t,

√
2 sin t

)

~r ′(t) =
(

− 2 sin t,
√
2 cos t,

√
2 cos t

)

~F
(

~r(t)
)

=
(

z(t)− y(t),−x(t)− z(t),−x(t)− y(t)
)

=
(
√
2 sin t−

√
2 sin t,−2 cos t−

√
2 sin t,−2 cos t−

√
2 sin t

)

= −
(

0, 2 cos t+
√
2 sin t, 2 cos t+

√
2 sin t

)

~F
(

~r(t)
)

· ~r ′(t) = −
[

4
√
2 cos2 t+ 4 cos t sin t

]

= −
[

2
√
2 cos(2t) + 2

√
2 + 2 sin(2t)

]

∮

C

~F · d~r =

∫ 2π

0

~F
(

~r(t)
)

· ~r ′(t) dt

=

∫ 2π

0

−
[

2
√
2 cos(2t) + 2

√
2 + 2 sin(2t)

]

dt = −
[
√
2 sin(2t) + 2

√
2t− cos(2t)

]2π

0
= −4

√
2π
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Stokes’ Theorem

To apply Stokes’ theorem we need to express C as the boundary ∂S of a surface S. As

C =
{

(x, y, z)
∣

∣ x2 + y2 + z2 = 4, z = y
}

is a closed curve, this is possible. In fact there are many possible choices of S with ∂S = C. Three possible

S’s are

S′′

S′

S S =
{

(x, y, z)
∣

∣ x2 + y2 + z2 ≤ 4, z = y
}

S′ =
{

(x, y, z)
∣

∣ x2 + y2 + z2 = 4, z ≥ y
}

S′′ =
{

(x, y, z)
∣

∣ x2 + y2 + z2 = 4, z ≤ y
}

The first of these, which is part of a plane, is likely to lead to simpler computations than the last two, which

are parts of a sphere. So we choose to use it.

In preparation for application of Stokes’ theorem, we compute ~∇× ~F and n̂ dS. For the latter, we apply

the formula n̂ dS = ±(−fx,−fy, 1) dxdy to the surface z = f(x, y) = y. We use the + sign to give the normal

a positive k̂ component.

~∇× ~F = det





ı̂ıı ̂ k̂
∂
∂x

∂
∂y

∂
∂z

z − y −x− z −x− y



 = ı̂ıı
(

− 1− (−1)
)

− ̂
(

− 1− 1
)

+ k̂
(

− 1− (−1)
)

= 2 ̂

n̂ dS = (0,−1, 1) dxdy

~∇× ~F · n̂ dS = (0, 2, 0) · (0,−1, 1) dxdy = −2 dxdy

The integration variables are x and y and, by definition, the domain of integration is

R =
{

(x, y)
∣

∣ (x, y, z) is in S for some z
}

To determine precisely what this domain of integration is, we observe that since z = y on S

S =
{

(x, y, z)
∣

∣ x2 + 2y2 ≤ 4, z = y
}

=⇒ R =
{

(x, y)
∣

∣ x2 + 2y2 ≤ 4
}

So the domain of integration is an ellipse with semimajor axis a = 2, semiminor axis b =
√
2 and area

πab = 2
√
2π and

∮

C

~F · d~r =

∫∫

S

~∇× ~F · n̂ dS =

∫∫

R

(−2) dxdy = −2 Area (R) = −4
√
2π

Remark (Limits of integration) If the integrand were more complicated, we would have to evaluate the

integral over R by expressing it as an iterated integrals with the correct limits of integration. First suppose

that we slice up R using thin vertical slices. On each such slice, x is essentially constant and y runs from

−
√

(4− x2)/2 to
√

(4− x2)/2. The leftmost such slice would have x = −2 and the rightmost such slice

would have x = 2. So the correct limits with this slicing are
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x

y

x2 + 2y2 = 4
∫∫

R

f(x, y) dxdy =

∫ 2

−2

dx

∫

√
(4−x2)/2

−
√

(4−x2)/2

dy f(x, y)

If, instead, we slice up R using thin horizontal slices, then, on each such slice, y is essentially constant and

x runs from −
√

4− 2y2 to
√

4− 2y2. The bottom such slice would have y = −
√
2 and the top such slice

would have y =
√
2. So the correct limits with this slicing are

x

y

x2 + 2y2 = 4
∫∫

R

f(x, y) dxdy =

∫

√
2

−
√
2

dy

∫

√
4−2y2

−
√

4−2y2

dx f(x, y)

Note that the integral with limits

x

y

∫

√
2

−
√
2

dy

∫ 2

−2

dx f(x, y)

corresponds to a slicing with x running from −2 to 2 on every slice. This corresponds to a rectangular

domain of integration.

Stokes’ Theorem, Again

Since the integrand is just a constant and S is so simple, we can evaluate the integral
∫∫

S
~∇× ~F · n̂ dS

without ever determining dS explicitly and without ever setting up any limits of integration. We already

know that ~∇× ~F = 2 ̂. Since S is the level surface z − y = 0, the gradient ~∇(z − y) = −̂+ k̂ is normal to

S. So n̂ = 1√
2
(−̂+ k̂) and

∮

C

~F · d~r =

∫∫

S

~∇× ~F · n̂ dS =

∫∫

S

(2̂) · 1√
2
(−̂+ k̂) dS =

∫∫

S

−
√
2 dS = −

√
2 Area (S)

As S is a circle of radius 2,
∮

C
~F · d~r = −4

√
2π , yet again.
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