Example of the Use of Stokes' Theorem

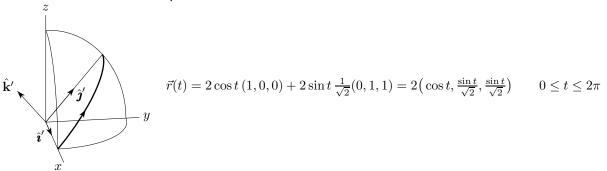
In these notes we compute, in three different ways, $\oint_C \vec{F} \cdot d\vec{r}$ where $\vec{F} = (z - y)\hat{i} - (x + z)\hat{j} - (x + y)\hat{k}$ and C is the curve $x^2 + y^2 + z^2 = 4$, z = y oriented counterclockwise when viewed from above.

Direct Computation

In this first computation, we parametrize the curve C and compute $\oint_C \vec{F} \cdot d\vec{r}$ directly. The plane z = y passes through the origin, which is the centre of the sphere $x^2 + y^2 + z^2 = 4$. So C is a circle which, like the sphere, has radius 2 and centre (0, 0, 0). We use a parametrization of the form

$$\vec{r}(t) = \vec{c} + \rho \cos t \, \hat{\boldsymbol{i}}' + \rho \sin t \, \hat{\boldsymbol{j}}' \qquad 0 \le t \le 2\pi$$

where $\vec{c} = (0, 0, 0)$ is the centre of C, $\rho = 2$ is the radius of C and \hat{i}' and \hat{j}' are two vectors that (a) are unit vectors, (b) are parallel to the plane z = y and (c) are mutually perpendicular. The point (2, 0, 0) satisfies both $x^2 + y^2 + z^2 = 4$ and z = y and so is on C. We may choose \hat{i}' to be the unit vector in the direction from the centre (0, 0, 0) of the circle towards (2, 0, 0). Namely $\hat{i}' = (1, 0, 0)$. Since the plane of the circle is z - y = 0, the vector $\vec{\nabla}(z - y) = (0, -1, 1)$ is perpendicular to the plane of C. So $\hat{k}' = \frac{1}{\sqrt{2}}(0, -1, 1)$ is a unit vector normal to z = y. Then $\hat{j}' = \hat{k}' \times \hat{i}' = \frac{1}{\sqrt{2}}(0, -1, 1) \times (1, 0, 0) = \frac{1}{\sqrt{2}}(0, 1, 1)$ is a unit vector that is perpendicular to \hat{i}' . Since \hat{j}' is also perpendicular to \hat{k}' , it is parallel to z = y. Subbing in $\vec{c} = (0, 0, 0)$, $\rho = 2$, $\hat{i}' = (1, 0, 0)$ and $\hat{j}' = \frac{1}{\sqrt{2}}(0, 1, 1)$ gives



To check that this parametrization is correct, note that $x = 2 \cos t$, $y = \sqrt{2} \sin t$, $z = \sqrt{2} \sin t$ satisfies both $x^2 + y^2 + z^2 = 4$ and z = y. At t = 0, $\vec{r}(0) = (2, 0, 0)$. As t increases, $z(t) = \sqrt{2}$ increases and $\vec{r}(t)$ moves upwards towards $\vec{r}(\frac{\pi}{2}) = (0, \sqrt{2}, \sqrt{2})$. This is the desired counterclockwise direction. Now that we have a parametrization, we can set up the integral.

$$\vec{r}(t) = (2\cos t, \sqrt{2}\sin t, \sqrt{2}\sin t)$$

$$\vec{r}'(t) = (-2\sin t, \sqrt{2}\cos t, \sqrt{2}\cos t)$$

$$\vec{F}(\vec{r}(t)) = (z(t) - y(t), -x(t) - z(t), -x(t) - y(t))$$

$$= (\sqrt{2}\sin t - \sqrt{2}\sin t, -2\cos t - \sqrt{2}\sin t, -2\cos t - \sqrt{2}\sin t)$$

$$= -(0, 2\cos t + \sqrt{2}\sin t, 2\cos t + \sqrt{2}\sin t)$$

$$\vec{F}(\vec{r}(t)) \cdot \vec{r}'(t) = -[4\sqrt{2}\cos^2 t + 4\cos t\sin t] = -[2\sqrt{2}\cos(2t) + 2\sqrt{2} + 2\sin(2t)]$$

$$\oint_C \vec{F} \cdot d\vec{r} = \int_0^{2\pi} \vec{F}(\vec{r}(t)) \cdot \vec{r}'(t) dt$$

$$= \int_0^{2\pi} -[2\sqrt{2}\cos(2t) + 2\sqrt{2} + 2\sin(2t)] dt = -[\sqrt{2}\sin(2t) + 2\sqrt{2}t - \cos(2t)]_0^{2\pi} = -4\sqrt{2}\pi$$

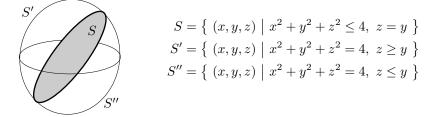
March 12, 2013

Stokes' Theorem

To apply Stokes' theorem we need to express C as the boundary ∂S of a surface S. As

$$C = \left\{ \left(x, y, z \right) \ \middle| \ x^2 + y^2 + z^2 = 4, \ z = y \right. \right\}$$

is a closed curve, this is possible. In fact there are many possible choices of S with $\partial S = C$. Three possible S's are



The first of these, which is part of a plane, is likely to lead to simpler computations than the last two, which are parts of a sphere. So we choose to use it.

In preparation for application of Stokes' theorem, we compute $\vec{\nabla} \times \vec{F}$ and $\hat{\mathbf{n}} dS$. For the latter, we apply the formula $\hat{\mathbf{n}} dS = \pm (-f_x, -f_y, 1) dxdy$ to the surface z = f(x, y) = y. We use the + sign to give the normal a positive $\hat{\mathbf{k}}$ component.

$$\vec{\nabla} \times \vec{F} = \det \begin{bmatrix} \hat{\boldsymbol{i}} & \hat{\boldsymbol{j}} & \hat{\mathbf{k}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ z - y & -x - z & -x - y \end{bmatrix} = \hat{\boldsymbol{i}} \Big(-1 - (-1) \Big) - \hat{\boldsymbol{j}} \Big(-1 - 1 \Big) + \hat{\mathbf{k}} \Big(-1 - (-1) \Big) = 2 \hat{\boldsymbol{j}} \\ \hat{\mathbf{n}} dS = (0, -1, 1) \, dx dy \\ \times \vec{F} \cdot \hat{\mathbf{n}} \, dS = (0, 2, 0) \cdot (0, -1, 1) \, dx dy = -2 \, dx dy$$

The integration variables are x and y and, by definition, the domain of integration is

 $R = \left\{ \begin{array}{c} (x,y) \ \big| \ (x,y,z) \text{ is in } S \text{ for some } z \end{array} \right\}$

To determine precisely what this domain of integration is, we observe that since z = y on S

$$S = \left\{ \left(x, y, z \right) \ \middle| \ x^2 + 2y^2 \le 4, \ z = y \ \right\} \implies R = \left\{ \left(x, y \right) \ \middle| \ x^2 + 2y^2 \le 4 \ \right\}$$

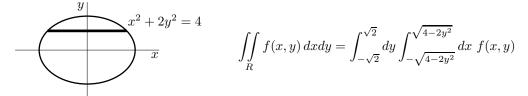
So the domain of integration is an ellipse with semimajor axis a = 2, semiminor axis $b = \sqrt{2}$ and area $\pi ab = 2\sqrt{2}\pi$ and

$$\oint_C \vec{F} \cdot d\vec{r} = \iint_S \vec{\nabla} \times \vec{F} \cdot \hat{\mathbf{n}} \, dS = \iint_R (-2) \, dx \, dy = -2 \, \operatorname{Area}\left(R\right) = \boxed{-4\sqrt{2}\pi}$$

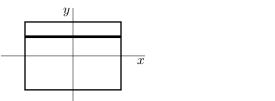
Remark (Limits of integration) If the integrand were more complicated, we would have to evaluate the integral over R by expressing it as an iterated integrals with the correct limits of integration. First suppose that we slice up R using thin vertical slices. On each such slice, x is essentially constant and y runs from $-\sqrt{(4-x^2)/2}$ to $\sqrt{(4-x^2)/2}$. The leftmost such slice would have x = -2 and the rightmost such slice would have x = 2. So the correct limits with this slicing are

 $\vec{\nabla}$

If, instead, we slice up R using thin horizontal slices, then, on each such slice, y is essentially constant and x runs from $-\sqrt{4-2y^2}$ to $\sqrt{4-2y^2}$. The bottom such slice would have $y = -\sqrt{2}$ and the top such slice would have $y = \sqrt{2}$. So the correct limits with this slicing are



Note that the integral with limits



$$\int_{-\sqrt{2}}^{\sqrt{2}} dy \int_{-2}^{2} dx \ f(x,y)$$

corresponds to a slicing with x running from -2 to 2 on **every** slice. This corresponds to a rectangular domain of integration.

Stokes' Theorem, Again

Since the integrand is just a constant and S is so simple, we can evaluate the integral $\iint_S \vec{\nabla} \times \vec{F} \cdot \hat{\mathbf{n}} \, dS$ without ever determining dS explicitly and without ever setting up any limits of integration. We already know that $\vec{\nabla} \times \vec{F} = 2\,\hat{\mathbf{j}}$. Since S is the level surface z - y = 0, the gradient $\vec{\nabla}(z - y) = -\hat{\mathbf{j}} + \hat{\mathbf{k}}$ is normal to S. So $\hat{\mathbf{n}} = \frac{1}{\sqrt{2}}(-\hat{\mathbf{j}} + \hat{\mathbf{k}})$ and

$$\oint_C \vec{F} \cdot d\vec{r} = \iiint_S \vec{\nabla} \times \vec{F} \cdot \hat{\mathbf{n}} \, dS = \iiint_S (2\hat{\boldsymbol{j}}) \cdot \frac{1}{\sqrt{2}} (-\hat{\boldsymbol{j}} + \hat{\mathbf{k}}) \, dS = \iiint_S -\sqrt{2} \, dS = -\sqrt{2} \, \operatorname{Area}\left(S\right)$$

As S is a circle of radius 2, $\oint_C \vec{F} \cdot d\vec{r} = -4\sqrt{2\pi}$, yet again.