Euler Wobble

Consider a rigid body with inertia tensor

$$
\mathcal{I}=\left[\begin{array}{ccc}
I_{1} & 0 & 0 \\
0 & I_{2} & 0 \\
0 & 0 & I_{3}
\end{array}\right] \quad \text { with } I_{1}=1, I_{2}=\frac{1}{2}, I_{3}=\frac{1}{3}
$$

Under free motion, the angular momentum \vec{M}, expressed in body coordinates, obeys Euler's equations (see "A Summary of Rigid Body Formulae")

$$
\dot{M}_{1}=M_{2} M_{3} \quad \dot{M}_{2}=-2 M_{1} M_{3} \quad \dot{M}_{3}=M_{1} M_{2}
$$

These equations imply that both $\vec{M}^{2}=M_{1}^{2}+M_{2}^{2}+M_{3}^{2}$ and the energy $E=M_{1}^{2}+2 M_{2}^{2}+3 M_{3}^{2}$ are conserved:

$$
\begin{aligned}
\frac{d}{d t}\left(M_{1}^{2}+M_{2}^{2}+M_{3}^{2}\right) & =2 M_{1} \dot{M}_{1}+2 M_{2} \dot{M}_{2}+2 M_{3} \dot{M}_{3}=2 M_{1} M_{2} M_{3}-4 M_{1} M_{2} M_{3}+2 M_{1} M_{2} M_{3}=0 \\
\frac{d}{d t}\left(M_{1}^{2}+2 M_{2}^{2}+3 M_{3}^{2}\right) & =2 M_{1} \dot{M}_{1}+4 M_{2} \dot{M}_{2}+6 M_{3} \dot{M}_{3}=2 M_{1} M_{2} M_{3}-8 M_{1} M_{2} M_{3}+6 M_{1} M_{2} M_{3}=0
\end{aligned}
$$

Assuming that $\vec{M}^{2} \neq 0$, we may choose units of time so that

$$
\begin{equation*}
M_{1}^{2}+M_{2}^{2}+M_{3}^{2}=1 \quad M_{1}^{2}+2 M_{2}^{2}+3 M_{3}^{2}=E \tag{*}
\end{equation*}
$$

Observe that the condition $M_{1}^{2}+M_{2}^{2}+M_{3}^{2}=1$ forces

$$
1=M_{1}^{2}+M_{2}^{2}+M_{3}^{2} \leq M_{1}^{2}+2 M_{2}^{2}+3 M_{3}^{2} \leq 3 M_{1}^{2}+3 M_{2}^{2}+3 M_{3}^{2}=3 \quad \text { so that } 1 \leq E \leq 3
$$

Here are sketchs of the curve $(*)$ for various values of E.
Case 1: $E=1$. In this case, $(*)$ forces $\vec{M}= \pm(1,0,0)$.
Case 2: $1<E<2$. The equations $(*)$ are equivalent to $M_{1}^{2}+M_{2}^{2}+M_{3}^{2}=1, M_{2}^{2}+2 M_{3}^{2}=E-1$. So $(*)$ is the intersection of the unit sphere with an elliptical cylinder centred on the x-axis.
Case 3: $E=2$. The equations ($*$) are equivalent to $M_{1}^{2}+M_{2}^{2}+M_{3}^{2}=1, M_{1}^{2}-M_{3}^{2}=0$. So (*) is the intersection of the unit sphere with the planes $M_{1}= \pm M_{3}$. Each sign gives a great circle.
Case 4: $2<E<3$. The equations $(*)$ are equivalent to $M_{1}^{2}+M_{2}^{2}+M_{3}^{2}=1,2 M_{1}^{2}+M_{2}^{2}=3-E$. So $(*)$ is the intersection of the unit sphere with an elliptical cylinder centred on the z-axis.
Case 5: $E=3$. In this case, $(*)$ forces $\vec{M}= \pm(0,0,1)$.

The following figure provides a sketch of some representative trajectories in the first octant.

We conclude that

- Trajectories that start exactly at $(\pm 1,0,0)$ or $(0, \pm 1,0)$ or $(0,0, \pm 1)$ (i.e. rotations of the rigid body exactly about one of its principal axes) do not move at all. That is, $(\pm 1,0,0),(0, \pm 1,0)$ and $(0,0, \pm 1)$ are critical points.
- Trajectories that start near, but not exactly at $(\pm 1,0,0)$ or $(0,0, \pm 1)$ (i.e. rotations of the rigid body almost about the longest or shortest principal axes) just circle about their starting points for all time. That is, $(\pm 1,0,0)$ and $(0,0, \pm 1)$ are stable critical points.
- Trajectories that start near, but not exactly at $(0,1,0)$ (i.e. rotations of the rigid body almost about the middle principal axis) move to near $(0,-1,0)$ and then back to near $(0,1,0)$ and so on. There is one exceptional trajectory (called the separatrix) that starts near $(0,1,0)$ and tries to go to $(0,-1,0)$ exactly, but slows as it gets closer and closer to $(0,-1,0)$ and never actually gets to $(0,-1,0)$. So $(0, \pm 1,0)$ are unstable critical points.

