
How Systems of First Order ODE’s Arise

A system of first order ordinary differential equations is a family of n ordinary

differential equations in n unknown functions y1(t), · · · , yn(t). To be ordinary (as opposed

to partial) differential equations, only ordinary (as opposed to partial) derivatives of the

unknown functions may appear. That is, the unknown functions are functions of a single

variable, here called t. In order for each equation to be first order, the highest order derivative

that appears in the equation must be one. So only yj(t), y′j(t), 1 ≤ j ≤ n may appear in

the equation and y
(m)
j (t), 1 ≤ j ≤ n, m ≥ 2 may not. Some y′j(t), 1 ≤ j ≤ n must appear

in each equation.

Systems of ODE’s tend to arise by some combination of two basic mechanisms. First

the original problem may involve the rates of change of more than one quantity. For example,

in the predator-prey and competing species problems one studies how the population sizes

of two (or more) species sharing some common ecosystem depend on time. In linear circuit

problems one studies the behaviour of complex electrical circuits built from “linear circuit

elements” like resistors and capacitors. The unknown are the currents Iℓ in the various

branches of the circuit and the charges Qj(t) on the various capacitors. The equations come

from Kirchhoff’s laws that state the total voltage around any closed loop in the circuit must

be zero and that the total current entering any node of the circuit must be zero.

The second mechanism is the conversion of one higher order equation

y(n)(t) = F
(

y(t), y′(t), · · · , y(n−1)(t)
)

into a system of first order equations by the simple expedient of defining

yj(t) = y(j)(t), 0 ≤ j ≤ n− 1

For each 0 ≤ j ≤ n− 2

d
dt
yj(t) =

d
dt

dj

dtj
y(t) = dj+1

dtj+1 y(t) = yj+1(t)

and for j = n− 1

d
dt
yn−1(t) =

d
dt

dn−1

dtn−1 y(t) = y(n)(t) = F
(

y(t), y′(t), · · · , y(n−1)(t)
)

= F
(

y0(t), y1(t), · · · , yn−1(t)
)

c© Joel Feldman. 2000. All rights reserved. 1



So, the system
d
dt
y0(t) = y1(t)

...
...

d
dt
yn−2(t) = yn−1(t)

d
dt
yn−1(t) = F

(

y0(t), y1(t), · · · , yn−1(t)
)

is equivalent to the original higher order system. The is, for each solution of the higher order

equation, there is a corresponding solution of the linear system and vice versa.

This trick enables us to use any algorithm for generating, numerically, approximate

solutions to systems of first order ode’s to also generate approximate solutions to higher order

ode’s. And, typically, it is an easy matter to adapt an algorithm designed for handling one

first order ode into an algorithm for handling systems of first order ode’s. It suffices to put

indices on the appropriate variables.

One common setting in which both mechanisms arise is that of particle mechanics.

Supoose that we have a system of N particles with mi and ~ri(t) being the mass and position

at time t, respectively, of particle number i. Then Newton’s law

mi~r
′′

i = ~Fi(~r1, · · · , ~rN )

is a system of 3N second order ordinary differential equations in the 3N unknowns ~r1, · · · , ~rN .

To solve this system by computer one can convert them into the system

~r ′

i = ~vi

~v ′

i = 1
mi

~Fi(~r1, · · · , ~rN)

of 6N first order ode’s in the 3N unknown positions ~r1, · · · , ~rN and 3N unknown velocities

~v1, · · · , ~vN .

c© Joel Feldman. 2000. All rights reserved. 2


