
Richardson Extrapolation

There are many approximation procedures in which one first picks a step size h and

then generates an approximation A(h) to some desired quantity A. Often the order of the

error generated by the procedure is known. In other words

A = A(h) +Khk +K ′hk+1 +K ′′hk+2 + · · ·

with k being some known constant and K, K ′, K ′′, · · · being some other (usually unknown)

constants. For example, A might be the value y(tf) at some final time tf for the solution to

an initial value problem y′ = f(t, y), y(t0) = y0 . Then A(h) might be the approximation

to y(tf ) produced by Euler’s method with step size h. In this case k = 1. If the improved

Euler’s method is used k = 2. If Runge-Kutta is used k = 4.

The notation O(hk+1) is conventionally used to stand for “a sum of terms of order

hk+1 and higher”. So the above equation may be written

A = A(h) +Khk +O(hk+1) (1)

If we were to drop the, hopefully tiny, term O(hk+1) from this equation, we would have one

linear equation, A = A(h) +Khk, in the two unknowns A,K. But this is really a different

equation for each different value of h. We can get a second such equation just by using a

different step size. Then the two equations may be solved, yielding approximate values of A

and K. This approximate value of A constitutes a new improved approximation, B(h), for

the exact A. We do this now. Taking 2k times

A = A(h/2) +K(h/2)k +O(hk+1) (2)

(note that, in equations (1) and (2), the symbol “O(hk+1)” is used to stand for two different

sums of terms of order hk+1 and higher) and subtracting equation (1) gives

(

2k − 1
)

A = 2kA(h/2)−A(h) +O(hk+1)

A =
2kA(h/2)−A(h)

2k − 1
+O(hk+1)
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Hence if we define

B(h) =
2kA(h/2)−A(h)

2k − 1
(3)

then

A = B(h) +O(hk+1) (4)

and we have generated an approximation whose error is of order k+1, one better than A(h)’s.

One widely used numerical integration algorithm, called Romberg integration, applies this

formula repeatedly to the trapezoidal rule.

Example

A = y(1) = 64.897803 where y(t) obeys y(0) = 1, y′ = 1− t+ 4y.

A(h) =approximate value for y(1) given by improved Euler with step size h.

B(h) = 2kA(h/2)−A(h)
2k

−1
with k = 2.

h A(h) % # B(h) % #

.1 59.938 7.6 20 64.587 .48 60

.05 63.424 2.3 40 64.856 .065 120

.025 64.498 .62 80 64.8924 .0083 240

.0125 64.794 .04 160

The “%” column gives the percentage error and the “#” column gives the number of evalu-

ations of f(t, y) used.

Similarly, by subtracting equation (2) from equation (1), we can find K.

0 = A(h)−A(h/2) +Khk
(

1− 1
2k

)

+O(hk+1)

K =
A(h/2)− A(h)

hk
(

1− 1
2k

) +O(h)

Once we know K we can estimate the error in A(h/2) by

E(h/2) = A− A(h/2)

= K(h/2)k +O(hk+1)

=
A(h/2)−A(h)

2k − 1
+O(hk+1)

If this error is unacceptably large, we can use

E(h) ∼= Khk
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to determine a step size h that will give an acceptable error. This is the basis for a number

of algorithms that incorporate automatic step size control.

Note that A(h/2)−A(h)
2k

−1
= B(h) − A(h/2). One cannot get a still better guess for A

by combining B(h) and E(h/2).

Example. Suppose that we wished to use improved Euler to find a numerical approximation

to A = y(1), where y is the solution to the initial value problem

y′ = y − 2t y(0) = 3

Suppose further that we are aiming for an error of 10−6. If we run improved Euler with

step size 0.2 (5 steps) and again with step size 0.1 (10 steps) we get the approximate values

A(0.2) = 6.70270816 and A(0.1) = 6.71408085. Since improved Euler has k = 2, These

approximate values obey

A = A(0.2) +K(0.2)2 + higher order = 6.70270816 +K(0.2)2 + higher order

A = A(0.1) +K(0.1)2 + higher order = 6.71408085 +K(0.1)2 + higher order

Subtracting

0 = 6.70270816 +K(0.2)2 − 6.71408085−K(0.1)2 + higher order ≈ −0.01137269 + 0.03K

so that

K ≈ 0.01137269
0.03

= 0.38

The error for step size h is Kh2 +O(h3), so to achieve an error of 10−6 we need

Kh2 +O(h3) = 10−6 ⇒ 0.38h2 ≈ 10−6 ⇒ h ≈

√

10−6

0.38 = 0.001622 = 1
616.5

If we run improved Euler with step size 1
617 we get the approximate value A( 1

617) =

6.71828064. In this illustrative, and purely artifical, example, we can solve the intial value

problem exactly. The solution is y(t) = 2+2t+et, so that the exact value of y(1) = 6.71828183,

to eight decimal places, and the error in A( 1
62 ) is 0.00000119.
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