Richardson Extrapolation

There are many approximation procedures in which one first picks a step size h and then generates an approximation A(h) to some desired quantity A. Often the order of the error generated by the procedure is known. In other words

$$A = A(h) + Kh^{k} + K'h^{k+1} + K''h^{k+2} + \cdots$$

with k being some known constant and K, K', K'', \cdots being some other (usually unknown) constants. For example, A might be the value $y(t_f)$ at some final time t_f for the solution to an initial value problem y' = f(t, y), $y(t_0) = y_0$. Then A(h) might be the approximation to $y(t_f)$ produced by Euler's method with step size h. In this case k = 1. If the improved Euler's method is used k = 2. If Runge-Kutta is used k = 4.

The notation $O(h^{k+1})$ is conventionally used to stand for "a sum of terms of order h^{k+1} and higher". So the above equation may be written

$$A = A(h) + Kh^{k} + O(h^{k+1})$$
(1)

If we were to drop the, hopefully tiny, term $O(h^{k+1})$ from this equation, we would have one linear equation, $A = A(h) + Kh^k$, in the two unknowns A, K. But this is really a different equation for each different value of h. We can get a second such equation just by using a different step size. Then the two equations may be solved, yielding approximate values of Aand K. This approximate value of A constitutes a new improved approximation, B(h), for the exact A. We do this now. Taking 2^k times

$$A = A(h/2) + K(h/2)^{k} + O(h^{k+1})$$
(2)

(note that, in equations (1) and (2), the symbol " $O(h^{k+1})$ " is used to stand for two **different** sums of terms of order h^{k+1} and higher) and subtracting equation (1) gives

$$(2^{k} - 1) A = 2^{k} A(h/2) - A(h) + O(h^{k+1})$$
$$A = \frac{2^{k} A(h/2) - A(h)}{2^{k} - 1} + O(h^{k+1})$$

(c) Joel Feldman. 2000. All rights reserved.

Hence if we define

$$B(h) = \frac{2^k A(h/2) - A(h)}{2^k - 1} \tag{3}$$

then

$$A = B(h) + O(h^{k+1})$$
(4)

and we have generated an approximation whose error is of order k+1, one better than A(h)'s. One widely used numerical integration algorithm, called Romberg integration, applies this formula repeatedly to the trapezoidal rule.

Example

A = y(1) = 64.897803 where y(t) obeys y(0) = 1, y' = 1 - t + 4y.

A(h) =approximate value for y(1) given by improved Euler with step size h. $B(h) = \frac{2^k A(h/2) - A(h)}{2^k - 1}$ with k = 2.

h	A(h)	%	#	B(h)	%	#
.025	$63.424 \\ 64.498$	$2.3 \\ .62$	$\frac{40}{80}$	$\begin{array}{c} 64.587 \\ 64.856 \\ 64.8924 \end{array}$.065	120
.0125	64.794	.04	160			

The "%" column gives the percentage error and the "#" column gives the number of evaluations of f(t, y) used.

Similarly, by subtracting equation (2) from equation (1), we can find K.

$$0 = A(h) - A(h/2) + Kh^{k} \left(1 - \frac{1}{2^{k}}\right) + O(h^{k+1})$$
$$K = \frac{A(h/2) - A(h)}{h^{k} \left(1 - \frac{1}{2^{k}}\right)} + O(h)$$

Once we know K we can estimate the error in A(h/2) by

$$E(h/2) = A - A(h/2)$$

= $K(h/2)^k + O(h^{k+1})$
= $\frac{A(h/2) - A(h)}{2^k - 1} + O(h^{k+1})$

If this error is unacceptably large, we can use

$$E(h) \cong Kh^k$$

(c) Joel Feldman. 2000. All rights reserved.

to determine a step size h that will give an acceptable error. This is the basis for a number of algorithms that incorporate automatic step size control.

Note that $\frac{A(h/2)-A(h)}{2^k-1} = B(h) - A(h/2)$. One cannot get a still better guess for A by combining B(h) and E(h/2).

Example. Suppose that we wished to use improved Euler to find a numerical approximation to A = y(1), where y is the solution to the initial value problem

$$y' = y - 2t \qquad y(0) = 3$$

Suppose further that we are aiming for an error of 10^{-6} . If we run improved Euler with step size 0.2 (5 steps) and again with step size 0.1 (10 steps) we get the approximate values A(0.2) = 6.70270816 and A(0.1) = 6.71408085. Since improved Euler has k = 2, These approximate values obey

$$A = A(0.2) + K(0.2)^{2} + \text{higher order} = 6.70270816 + K(0.2)^{2} + \text{higher order}$$
$$A = A(0.1) + K(0.1)^{2} + \text{higher order} = 6.71408085 + K(0.1)^{2} + \text{higher order}$$

Subtracting

$$0 = 6.70270816 + K(0.2)^2 - 6.71408085 - K(0.1)^2 + \text{higher order} \approx -0.01137269 + 0.03K$$

so that

$$K \approx \frac{0.01137269}{0.03} = 0.38$$

The error for step size h is $Kh^2 + O(h^3)$, so to achieve an error of 10^{-6} we need

$$Kh^2 + O(h^3) = 10^{-6} \quad \Rightarrow \quad 0.38 h^2 \approx 10^{-6} \quad \Rightarrow \quad h \approx \sqrt{\frac{10^{-6}}{0.38}} = 0.001622 = \frac{1}{616.5}$$

If we run improved Euler with step size $\frac{1}{617}$ we get the approximate value $A(\frac{1}{617}) = 6.71828064$. In this illustrative, and purely artifical, example, we can solve the initial value problem exactly. The solution is $y(t) = 2+2t+e^t$, so that the exact value of y(1) = 6.71828183, to eight decimal places, and the error in $A(\frac{1}{62})$ is 0.00000119.