Parametrizing Circles

These notes discuss a simple strategy for parametrizing circles in three dimensions. We start with the circle in the $x y$-plane that has radius ρ and is centred on the origin. This is easy to parametrize:

$$
\vec{r}(t)=\rho \cos t \hat{\imath}+\rho \sin t \hat{\boldsymbol{\jmath}} \quad 0 \leq t \leq 2 \pi
$$

Note that we can check that $\vec{r}(t)$ lies on the desired circle by checking, firstly, that $\vec{r}(t)$ lies in the correct plane (in this case, the $x y$-plane) and, secondly, that the distance from $\vec{r}(t)$ to the centre of the circle is ρ :

$$
|\vec{r}(t)-\overrightarrow{0}|=|\rho \cos t \hat{\boldsymbol{\imath}}+\rho \sin t \hat{\boldsymbol{\jmath}}|=\sqrt{(\rho \cos t)^{2}+(\rho \sin t)^{2}}=\rho
$$

since $\sin ^{2} t+\cos ^{2} t=1$.
Now let's move the circle so that its centre is at some general point \vec{c}. To parametrize this new circle, which still has radius ρ and which is still parallel to the $x y$-plane, we just translate by \vec{c} :

$$
\vec{r}(t)=\vec{c}+\rho \cos t \hat{\boldsymbol{\imath}}+\rho \sin t \hat{\boldsymbol{\jmath}} \quad 0 \leq t \leq 2 \pi
$$

Finally, let's consider a circle in general position. The secret to parametrizing a general circle is to replace $\hat{\boldsymbol{\imath}}$ and $\hat{\boldsymbol{\jmath}}$ by two new vectors $\hat{\boldsymbol{\imath}}^{\prime}$ and $\hat{\boldsymbol{\jmath}}^{\prime}$ which (a) are unit vectors, (b) are parallel to the plane of the desired circle and (c) are mutually perpendicular.

$$
\vec{r}(t)=\vec{c}+\rho \cos t \hat{\boldsymbol{\imath}}^{\prime}+\rho \sin t \hat{\boldsymbol{\jmath}}^{\prime} \quad 0 \leq t \leq 2 \pi
$$

To check that this is correct, observe that

- $\vec{r}(t)-\vec{c}$ is parallel to the plane of the desired circle because $\vec{r}(t)-\vec{c}=\rho \cos t \hat{\boldsymbol{\imath}}^{\prime}+\rho \sin t \hat{\boldsymbol{\jmath}}^{\prime}$ and both $\hat{\boldsymbol{\imath}}^{\prime}$ and $\hat{\boldsymbol{\jmath}}^{\prime}$ are parallel to the plane of the desired circle
- $\vec{r}(t)-\vec{c}$ is of length ρ for all t because

$$
\begin{aligned}
|\vec{r}(t)-\vec{c}|^{2} & =(\vec{r}(t)-\vec{c}) \cdot(\vec{r}(t)-\vec{c}) \\
& =\left(\rho \cos t \hat{\boldsymbol{\imath}}^{\prime}+\rho \sin t \hat{\boldsymbol{\jmath}}^{\prime}\right) \cdot\left(\rho \cos t \hat{\boldsymbol{\imath}}^{\prime}+\rho \sin t \hat{\boldsymbol{\jmath}}^{\prime}\right) \\
& =\rho^{2} \cos ^{2} t \hat{\boldsymbol{\imath}}^{\prime} \cdot \hat{\boldsymbol{\imath}}^{\prime}+\rho^{2} \sin ^{2} t \hat{\boldsymbol{\jmath}}^{\prime} \cdot \hat{\boldsymbol{\jmath}}^{\prime}+2 \rho \cos t \sin t \hat{\boldsymbol{\imath}}^{\prime} \cdot \hat{\boldsymbol{\jmath}}^{\prime} \\
& =\rho^{2}\left(\cos ^{2} t+\sin ^{2} t\right)=\rho^{2}
\end{aligned}
$$

since $\hat{\boldsymbol{\imath}}^{\prime} \cdot \hat{\boldsymbol{\imath}}^{\prime}=\hat{\boldsymbol{\jmath}}^{\prime} \cdot \hat{\boldsymbol{\jmath}}^{\prime}=1$ ($\hat{\boldsymbol{\imath}}^{\prime}$ and $\hat{\boldsymbol{\jmath}}^{\prime}$ are both unit vectors) and $\hat{\boldsymbol{\imath}}^{\prime} \cdot \hat{\boldsymbol{\jmath}}^{\prime}=0\left(\hat{\boldsymbol{\imath}}^{\prime}\right.$ and $\hat{\boldsymbol{\jmath}}^{\prime}$ are perpendicular).

To find such a parametrization in practice, we need to find the centre \vec{c} of the circle, the radius ρ of the circle and two mutually perpendicular unit vectors, $\hat{\boldsymbol{\imath}}^{\prime}$ and $\hat{\boldsymbol{\jmath}}^{\prime}$, in the plane of the circle. It is often easy to find at least one point \vec{p} on the circle. Then we can take $\hat{\boldsymbol{\imath}}^{\prime}=\frac{\vec{p}-\vec{c}}{|\vec{p}-\vec{c}|}$. It is also often easy to find a unit vector, $\hat{\mathbf{k}}^{\prime}$, that is normal to the plane of the circle. Then we can choose $\hat{\boldsymbol{\jmath}}^{\prime}=\hat{\mathbf{k}}^{\prime} \times \hat{\boldsymbol{\imath}}^{\prime}$.

Example 1 Let C be the intersection of the sphere $x^{2}+y^{2}+z^{2}=4$ and the plane $z=y$. The intersection of any plane with any sphere is a circle. The plane in question passes through the centre of the sphere, so C has the same centre and same radius as the sphere. So C has radius 2 and centre $(0,0,0)$. The point $(2,0,0)$ satisfies both $x^{2}+y^{2}+z^{2}=4$ and $z=y$ and so is on C. We may choose $\hat{\boldsymbol{\imath}}^{\prime}$ to be the unit vector in the direction from the centre $(0,0,0)$ of the circle towards $(2,0,0)$. Namely $\hat{\boldsymbol{\imath}}^{\prime}=(1,0,0)$. Since the plane of the circle is $z-y=0$, the vector $\vec{\nabla}(z-y)=(0,-1,1)$ is perpendicular to the plane of C. So we may take $\hat{\mathbf{k}}^{\prime}=\frac{1}{\sqrt{2}}(0,-1,1)$. Then $\hat{\boldsymbol{\jmath}}^{\prime}=\hat{\mathbf{k}}^{\prime} \times \hat{\boldsymbol{\imath}}^{\prime}=\frac{1}{\sqrt{2}}(0,-1,1) \times(1,0,0)=\frac{1}{\sqrt{2}}(0,1,1)$. Subbing in $\vec{c}=(0,0,0), \rho=2$, $\hat{\boldsymbol{\imath}}^{\prime}=(1,0,0)$ and $\hat{\boldsymbol{\jmath}}^{\prime}=\frac{1}{\sqrt{2}}(0,1,1)$ gives

To check this, note that $x=2 \cos t, y=\sqrt{2} \sin t, z=\sqrt{2} \sin t$ satisfies both $x^{2}+y^{2}+z^{2}=4$ and $z=y$.

Example 2 Let C be the circle that passes through the three points (3, 0, 0), ($0,3,0$) and ($0,0,3$). All three points obey $x+y+z=3$. So the circle lies in the plane $x+y+z=3$. We guess, by symmetry, or by looking at the figure below, that the centre of the circle is at the centre of mass of the three points, which is $\frac{1}{3}[(3,0,0)+(0,3,0)+(0,0,3)]=(1,1,1)$. We can check this by checking that $(1,1,1)$ is equidistant from the three points:

$$
\begin{aligned}
|(3,0,0)-(1,1,1)| & =|(2,-1,-1)|=\sqrt{6} \\
|(0,3,0)-(1,1,1)| & =|(-1,2,-1)|=\sqrt{6} \\
|(0,0,3)-(1,1,1)| & =|(-1,-1,2)|=\sqrt{6}
\end{aligned}
$$

This tells us both that $(1,1,1)$ is indeed the centre and that the radius of C is $\sqrt{6}$. We may choose $\hat{\boldsymbol{\imath}}^{\prime}$ to be the unit vector in the direction from the centre $(1,1,1)$ of the circle towards $(3,0,0)$. Namely $\hat{\boldsymbol{i}}^{\prime}=\frac{1}{\sqrt{6}}(2,-1,-1)$. Since the plane of the circle is $x+y+z=3$, the vector $\vec{\nabla}(x+y+z)=(1,1,1)$ is perpendicular to the plane of C. So we may take $\hat{\mathbf{k}}^{\prime}=\frac{1}{\sqrt{3}}(1,1,1)$. Then $\hat{\boldsymbol{\jmath}}^{\prime}=\hat{\mathbf{k}}^{\prime} \times \hat{\boldsymbol{\imath}}^{\prime}=\frac{1}{\sqrt{18}}(1,1,1) \times(2,-1,-1)=\frac{1}{\sqrt{18}}(0,3,-3)=\frac{1}{\sqrt{2}}(0,1,-1)$. Subbing in $\underset{z}{\vec{c}}=(1,1,1), \rho=\sqrt{6}, \hat{\boldsymbol{\imath}}^{\prime}=\frac{1}{\sqrt{6}}(2,-1,-1)$ and $\hat{\boldsymbol{\jmath}}^{\prime}=\frac{1}{\sqrt{2}}(0,1,-1)$ gives

$$
\begin{aligned}
\vec{r}(t) & =(1,1,1)+\sqrt{6} \cos t \frac{1}{\sqrt{6}}(2,-1,-1)+\sqrt{6} \sin t \frac{1}{\sqrt{2}}(0,1,-1) \\
& =(1+2 \cos t, 1-\cos t+\sqrt{3} \sin t, 1-\cos t-\sqrt{3} \sin t) \quad 0 \leq t \leq 2 \pi
\end{aligned}
$$

To check this, note that $\vec{r}(0)=(3,0,0), \vec{r}\left(\frac{2 \pi}{3}\right)=(0,3,0)$ and $\vec{r}\left(\frac{4 \pi}{3}\right)=(0,0,3)$ since $\cos \frac{2 \pi}{3}=\cos \frac{4 \pi}{3}=-\frac{1}{2}$, $\sin \frac{2 \pi}{3}=\frac{\sqrt{3}}{2}$ and $\sin \frac{4 \pi}{3}=-\frac{\sqrt{3}}{2}$.

