Mathematics 263, Section 102

MULTIVARIABLE and VECTOR CALCULUS

Department of Mathematics University of British Columbia

Prerequisites: One of SCIE 001, PHYS 101, 107, 121, 153 and one of SCIE 101, PHYS 102, 108, 122, 153 and one of SCIE 001, MATH 101, MATH 103, MATH 105, MATH 121.

Corequisites: one of MATH 152, 221, 223.


Instructor

Joel Feldman

 E-mail    feldman@math.ubc.ca 
 Office  Math 221
 Phone  604-822-5660
 Home page  http://www.math.ubc.ca/~feldman/
 Office hours   Tues 9:00-10:00, Tues 15:00-16:00, Thr 15:00-16:00

Class Times and Location


Text

I will post all handouts, problem sets, etc. on the web here.


Topics

  1. Vectors and the Geometry of Space (§10.1-10.4):
        Three dimensional coordinate systems,
         Vectors, dot and cross products, projections
         Equations of lines and planes.
  2. Vector Functions (§11.1,11.3):
        Vector functions and space curves, parametrization
        Derivatives and integrals of vector functions,
        Arc length, speed, velocity and acceleration. Exclude curvature, normal, binormal, torsion.
  3. Partial Derivatives (§ 10.5, 12.1-12.9, 13.1-13.3, 13.6):
        Functions of several variables: visualizaton, quadrics,
        Limits, partial derivatives,
        Tangent planes and linear approximations,
        Chain rule, directional derivatives, gradient,
        Higher order derivatives, quadratic approximation,
        Local maxima and minima, Lagrange multipliers,
        Newton's method.
  4. Multiple Integrals (§14.1-14.6):
         Double and iterated integrals, polar coordinates, changing the order of integration
         Applications, surface area,
         Triple integrals, changing the order of integration
         Cylindrical and Spherical co-ordinates.
  5. Vector Fields and Line Integrals (§15.1-15.4):
         Vector fields, conservative fields, potentials, line integrals.
  6. Surface integrals (§15.5, 15.6):
         Surfaces, parametrization, flux integrals, surface area, applications.
  7. Integral Theorems (§16.1-16.6):
         Gradient, divergence and curl, vector identities, divergence theorem,
         Green's theorem, Stokes' theorem, applications.

Grading

Policies